R — e e ———— "

AD-A036 115 SYSTEM DEVELOPMENT CORP SANTA MONICA cm_lc Rl F/G 9/2
SOFTWARE DATA COLLECTION STUDY. VOLUME I. SUMMARY AND CONCLUSIO=-=ETC(L)

DEC 76 N E WILLMORTHs M C FINFER F30602=75=C= 0248
UNCLASSIFIED SDC-TM=5542/001/01 RADC=-TR=76-329-VOL~-1

- e ———————————

._._._.—._.
SEEE

I—NML.:P:.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE “When Dats Fntered)
REPORT DOCUMENTATION PAGE e pREAD INSTRUCTIONS ©
1. REPORT NUMBER Tl GOVT ACCESSION NO. CIPIENT'S CATALOG NUMBER
RADC-TR~-76-329, Vol 1 (of eight) ‘
4. TITLE (and Sub TYP REPORT
o e Final Aechnical Repewrte

SOFTWARE DATA GOLLECTION STUDY» ngu.me I &

urg M75«= June W76 3
- 1

/0

Summary and Conclusionsa o G
~ID<1"TM 5542

NUMBER(sS)

N. E. 111mort2>

M. C. finfer 5%73(1942-75-(:- 48/

M. P./Templeton

. PERFORMING ORGANIZATION NAME AND ADDRESS 70 PROGRAM ELEMENT, PROJECT, TASK

System Development Corporation AREAS VORK UNITNUNBERE

2500 Colorado Avenue 63728F

Santa Monica CA 90406 555008610

11. CONTROLLING OF FICE NAME AND ADDRESS mEPONT DAY,

Rome Air Development Center (ISIS) (/A Decegurw W76 -

Criffiss AFB NY 13441 13. NUMBER OF PAGES G
114

Te. MONITORING
Same

ORESS(if different from Controlling Office) 1S. SECURITY CL ASS. (of this repor?)

UNCLASSIFIED

1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Anproved for public release; distribution unlimited.

r=zil @727]

'7 DISTRIBUTION STATEMENT

18. SUPPLEMENTARY NOTES

RADC Project Engineer:
Richard T. Slavinski (ISIS)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Software Development

Data Collection
Software Research

ABSTRACT (Continue on reverae side if necessary and identify by block number)
he burgeoning costs of software development have centered research interest

in software methodology, project productivity and program reliability.
However, such research is hindered by the lack of standard, reliable data
for an adequate sample of software projects upon which to base conclusions.
RADC proposes to establish a repository in which software development data
may be accumulated; this study was conducted to generate recommendations

concerning a data collection system for that repository. ———
(cont

W
R

DD ,on'ss 1473 €oimion oF 1 NOV 65 S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

889900 Ao

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The objective of the study was to investigate:
Data collection problems

. Data requirements for productivity, software reliability
and cost studies

Data entry/data management interface

Specifications for a software data collection and reporting system ‘K\
ta

This report consists of an executive summary of the investigations made. Da
collection problems were found to arise from the lack of standardization,

from the effects of "instrumenting" the development process, from resistance
to management control and from relunctance to release data. Data requirements
for productivity, software reliability and cost studies include environmental
parameters, project performance data and product quality characteristics
obtained at strategic points in time and place in the software development
life cycle. An overview of the collection automation reauirements included a
discussion of the advantages and disadvantages of various data base structures,
degree of centralization, data management funcrions, and system hardware. The
general specifications for the data collection and reporting system included
the recommendations made for data entry, and data management system, with
specificity to data types and methods of collection, after considering the
alternatives derived during the course of the study. Also included is a brief
discussion of the merits/demerits of an independent collection agency
consisting of either a civilian contractor, Civil Service, Air Force personnel
or combination of the above.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Data Entered)

(i

TABLE OF CONTENTS i

1. Technical Problem 1 i
1.1 Definition of the Problem 1 ;
Y2 Objectives of the Study 2 ;
}.3 General Methodology 3 ;
$ 1.4 Organization of the Report) ;
* 2. Assumptions and Limitations 7 ‘
2.1 Software System Development Concepts 7
2.1.1 Controlling the Developmental Process 8
2.1.2 Project Environment 8
2.1.3 Software Development Life-Cycle Model 12
{ 2.1.4 The Work Greakdown Structure 14
2.1.5 Performance Control 18
2.2 Repository Operational Concept 19
. 2.2.1 Project Management 19
l 2.2.2 Research 20
: 2.2.3 Desensitization, Privacy, and Security 21
2.2.4 Growth Potential 22
2.2.5 Flexibility 22
3 Data Collection Technology 24
3.1 Problems of Data Acquisition 24
3.1.1 Mensuration Difficulties 25
3.1.2 Instrumentation [ffects 26
f 3.1.3 Unreliability of Measures 27
- 3.1.4 Reluctance to Release Data g 27
3.1.5 Cost Factors 29
3.1.6 Systemic Problems 30 §
3.1.7 Problem Summary 30 i
3.2 Current Data Collection Techniques 3] :
3.2.1 Environmental Characteristics 32
3.2.2 Project Performance Characteristics 32

Section

3.2.3
3.2.4
3:2:5
3.3

3.3%1
3.3:2
3.3:3
3.3.4
3.3:5
3.3.6
3.4

3.4.1
3.4.2
3.4.3
3.4.4

4.

4.1
4.2
4.3

5.

5.1
5.1.1
5.1.2
5.1.2.1
5.1.2.2
5.1.2.3
5.2
5.2.1
5.2.2
5.2.3
5.2.4

TABLE OF CONTENTS(cont'd)

Configuration Characteristics

Quality Control Data

Summary of Current Military Practices

Data Collection Monitor Systems

IMPACT

SIMON

BMDATC Quantitative Data Base

IBM Management Data Collection and Reporting Systiem
TRW Software Reliability Study

Evaluation of Software Monitors

Evaluation of Reporting Formats and Data Types
Environmental Data

Performance Data

Configuration Data

Quality Control Data

Data Requirements for Productivity and Reliability Studies
Productivity Analyses

Reliability Anayses

Software Development Cost Studies

Data Collection Automation Requirements
Data Structures

Degree of Centralization

Data Base Structure

Physical Structure

Access Methods

Logical Structures

Data Management Functions

Data Definition Language

Data Base Generation and Maintenance
Data Base Query and Information Retrieval
Data Base Integrity

iv

S A oA

Page

33
34
34
35 &
35

36
36
37
37
38
38
40
41
42

43
43
48
51

54
54
54 -
57 '
57
58
60
61
61
62
62
62

T b0 e R

Section

5.2;

5

§.2.6

(S A B3 A BN S L RS o RS L BTS2 BN S s Y 5 s B S 2 B & 4]
.
~nN

W W W w N NN NN
R s
w

N OO OO OO O O
N oYW N -

)
.8
v3
.10
A1
12

TABLE OF CONTENTS (cont'd)

Security

Accounting

Data Base Restructuring

Core Management

Reporting

Scheduling

Coaching

Data Management System Capabilities -
System Hardware Configuration
Data Base Storage Media

Data Entry Methods

Processors

Software Data Collection System Specifications
Purpose

Assumptions and Limitations

Data Acquisition Procedures

Data Requirements

Data Entry Configuration

Data Base and Data Base Management

Repository Operations Management

Implications for Further Research

Page 5 %
63
64

64
65
65
65
65
66
66
67
70

72
72
72
75
78

103

106 1

109 ;

13

EVALUATION

The objective of this effort was to investigate the general area of
software data collection and determine data criteria necessary to assist
project management, to assess evolving programming techniques, and to
support continued software technology research and development.

This effort is part of TPO 3.V.A.l.4, Quality Contrcl. Immediate
results of this study will be used to establish a pilot facility at RADC
which will function as a nucleus or baseline for the development of a
fully operational central repository of software development data.

This investigation successfully addressed all major program objectives.
Notable accomplishments, initially viewed as critical problems facing
the development of a large software data base, include:

a. The definition, classification, and categorization of data
parameters required to support productivity, reliability,
and cost analyses.

b. The formulation of data collection forms, modularized to
accomodate diverse projects and allow expansion of data
parameters based upon evolving research goals and future
software quality metrics.

Recommendations resulting from this effort and a parallel study
conducted by the Illinois Institute of Technology Research Institute
(IITRI), contract F30602-75-C-0257, "Software Data Repository," are
currently being integrated into RADC plans for implementing a localized
pilot facility. Technical decisions/direction for a fully operational
repository will evolve from continued evaluation of this facility.

/) a—
RICHARD T. SLAVINSKI
Project Engineer

vl

~-methodology lack validity. Establishment of a software development data

| I TECHNICAL PROBLEM

The overall objective of the Data Collection Study was to conduct an investi-
gation into the formation of a software data repository that would assist RADC
in the development of a viable and effective research program in data process-
ing technology. Accurate, reliable and valid data are required to provide
credible evaluations of proposed innovations in software development method-
ology and to provide deeper insight into the software development process that
could result in improvements in programming productivity, software reliability,
and software development costs.

i At U K i

1.1 DEFINITION OF THE PROBLEM

The burgeoning costs of software development, the lag in software productivity
behind hardware productivity, and the continuing uncertainty of,predicting the
cost, time and difficulty of software production are matters of great concern
to the data processing community. At the present time there are a number of
current development technologies that are alleged to result in increased pro-
grammer productivity and software reliability. However, despite the optimis-
tic claims advanced for these tools and techniques, there is atpresent few, if
any, really trustworthy data to support the claims. There has been little
effort expended in the past in compiling objective historical data concerning
software development projects and the techniques employed by those projects.
Most previous studies of the software development process have been based upon
subjective, after-the-fact assessment of project parameters. Current claims
are based upon experimental trials using the new methodology in the absence of
adequately defined control trials upon which to base comparisons. Without
such information, conclusions drawn concerning the effectiveness of the new

repository will provide a valuable service in collecting the data upon which
to base comparisons and form conclusions.

P continuing repository and data collection system will go a long way toward
supporting and, perhaps, resolving many of the difficulties encountered in
performing studies of data processing technology. Developmental projects have
an ephemeral existence; they are created, perform as required, and are discon-

tinued. The people working on a project are dispersed, assigned to other pro-
jects and are no longer responsible for preserving data concerned with that
project. Without any immediate interest in the accumulated data, it is soon
lost or discarded. Once delivered, the responsibility for operating and main-
taining a system often shifts to an 0&M group. Since many of the current
claims to increased productivity are based upon alleged increases in reliabi-
lity, transportability and maintainability during the life of the system, con-
tinuity of data collection is essential to the demonstration of the truth of
such claims. Only by providing a reposi.ory for software development data
independent of the transitory concerns of the variaus groups associated with
the life of a system can such data be preserved for use in technology assess-
ments.

1.2 OBJECTIVES OF THE STUDY

The objectives of the proposed RADC Software Development Data Repository are
to:
e Preserve software development data collected over many
projects and under many conditions for further evaluation.

& Generate further insight into the software development process.

® Provide the basis for comparative studies of software develop-
ment methodologies and techniques.

® Provide data services for project management.

The study is being pursued by two contractors. SDC, the author of this study,
is emphasizing components of data collection for the repository, while ITTRI,
the other contractor, is emphasizing the retrieval aspects of the repository.

The objectives of this study are to:

e Investigate the problems associated with the collection of
accurate, reliable and valid software development data.

o Determine the data required to serve the needs of project
management and methodological research for software system
development.

¥

-

e Investigate data col:.:ction and data entry methods and tech-
niques that could be used to acquire data for the repository
on an ongoing basis.

® Determine the impacts of data base structure and data manage-
ment system functions on the software data collection system.

To attain these objectives, the study determined the data needed to support a
variety of research areas and to support the effective management of a proj-
ect. The research goals that were considered include investigations of the
impacts of tools and techniques on programmer productivity and program relia-
bility, investigations of the impacts of environmental factors on productivity
and reliability, and investigations of the relationships of other indices of
program quality to project characteristics. Research was also done into proj-
ect management techniques and tools as well as defining the basic data re-
quirements of a project management system. :

The Software Data Repository must interact with the data collection system to
accept and store these data, to protect the stored date from unauthorized
access or modification, and to answer complex queries ard perform requested
analyses. The structure of the repository partially depends upon the variety
and composition of the data. partially upon the adopted concepts of data
acquisition and storage, and partially upon research requirements.

GENERAL METHODOLOGY

The investigation of software data collection problems tapped several sources
for the identification and evaluation of problems and the prescription of
solutions to them. These include:

o The literature
e SDC project managers
e Military program management offices

o Software data repositories

e TP T A S

The literature survey included books on programming management, programming
methodology and program reliability , plus papers from the technical press,
military and governmental repositories. Summaries of the previous studies
will be found in Volumes 2, 3, and 4. A1l references to material used or
quoted are found in the bibliographies of the individual volumes.

The SDC project managers with relevant experience were contacted personally and
via questionnaire. Military program management offices of the three services
were contacted by questionnaire. The results of the questionnaire are
analyzed in Volume 5.

A conference was held at SDC which included representatives from the proposed
RADC Software Data Repository, the BMDATC Quantitative Data Base and the USAF
Satellite Control Facility Computer Program Development Library. The pro-
ceedings of the conference are contained in Volume 6.

1.4 ORGANIZATION OF THE REPORT

The total report for this study is organized into a series of volumes and

appendices. This volume, Summary and Conclusions, stétes the problem, the
assumptions and limitations upon which the study is based, and an executive
summary of the investigations and conclusions of the study. References are
made through this volume to the other volumes that support the conclusions.

The volumes in the report series are:

Volume/001 Summary and Conclusions.

This volume summarizes the study and encompasses the recommenda-
tions that are made for the RADC Software Development Data
Collection System.

Volume/002 An Analysis of Software Data Collection Problems and
Current Capabilities.

This volume addresses the current state of the art in software
data collection. It looks at the difficulties that surround

the collection of reliable and valid data, including the standardi-

o

1

zation of measurements and developer reluctance to release data.
It also examines current military data collection practices and
the potentials of the automatic data collection tocls that are
under development. Operations management of the data collection
facility is considered.

Volume/003 Lata Requirements for Productivity and Reliability
Studies.

This volume reviews the studies that have been done in the areas
of project and programmer productivity, software reliability and
other indices of program quality. As a result of the review,
augmented by the other activities and analyses conducted by the
project, requirements for the parameters necessary to study this
phenomena are derived. Detailed description of data items is
relegated to Volume 007, a Compendium of Procedures and Parameters.

Volume/004 Data Management System Interface.

This volume reports the survey of data entry and data management
methodology conducted to define the interface requirements that
exist between data acquisition and the data storage. Requirements
for data entry formatting and processing may be derived from this
survey.

Volume/005 Survey of Project Managers.

This volume reports the results of a survey of project managers
and military program office personnel that was conducted to
isolate problems and data requirements.

Volume/006 Proceedings of the Data Collection Problems Conference.
This volume reports the results of an SDC sponsored conference
attended by personnel associated with three software data reposi-
tories on the problems associated with software data collection
and potential solutions.

B —

Volume/007 Compendium of Procedures and Parameters

This volume is in essence an appendix for Volume 003. It con-
tains descriptions of data parameters, proposed data base
structure, and data collection forms and instructions. The 3
forms and data base elements were derived using criteria of
collection priority and of the principles of modularity including
“internal strength" and "relative independence" as well as size
limitations. 7]

gl

i LR el A

Volume/008 Glossary of Data Collection Terminology

This volume consists of a glossary of the terms used in the above
reports. The glossary does not seek to repeat definitions of most
commonly used data processing terms, but only those pertinent to
these reports.

2. ASSUMPTIONS AND LIMITATIONS

The recommendations for the data collection study are based upon several
assumptions concerning the structure and organization of the phenomena to

be measured, the aims and concepts of operation of the proposed data
repository, and the problems inherent in collecting reliable and valid data
from a software development project. These assumptions were not "given",
but were developed during the study and formed a major portion of it. These
assumptions govern the design alternatives available to the software data
collection system and the content and structure of the data requirements
that have been developed.

2.1 SOFTWARE -YSTEM DEVELOPMENT CONCEPTS

An understanding of the nature, composition and functioning of the software
development process is necessary if a thorough analysis of information
requirements conducive to the understanding, control and improvement of the
process is to be accomplished. This understanding is advanced through the
adoption of a series of models of various aspects of the software develop-
ment process, including:

e Process control model
® Project environment model
e Software development 1ife-cycle model

o Work Breakdown Structures
- Product configurations
- Function configurations

e Management control models
- Configuration management
- Performance management

hi
o
1

2.1.1 Controlling the Developmental Process

In terms of a software development system, software data collection operates
at two levels: 1) the level of direct management control over the develop-
mental proce s; 2) the higher level of performing methodological research

to improve the software development process itself. (See Figure 1). At

the management "quality assurance" level, only that information is necessary
that enables the manager to ascertain the quality of performance of the
software product. The efficiency of the total process may be of some
interest, but the day-to-day control of operations is primary.

At the system "quality control" level, more far-reaching information is
necessary. The software development system must have operated enough times
to obtain a stable estimate of its average performance and enough manipula-
tion of the system must have occurred to understand the influence of
manipulations upon its behavior. For management control purposes, "black
box" measurement is adequate; for quality control purposes, the internal
operations of the system must be known so that they may be improved. In
short, although quality control may not need as frequent or as fine infor-
mation on the immediate operations of the system, it needs additional
measures on product quality, system performance and the effectiveness of the
management control process that the 'quality assurance' level does not need.
Insofar as the accumulation of these additional measures forms a burden on
the project, project resistance to their collection may be expected. Since
the precision and accuracy of measures for one use differ from those for the
other, some problem exists. On the other hand, there is great overlap in the
information to be collected for the two purposes and it would be inefficient
to use duplicate data collection systems if one will suffice.

2.1.2 Project Environment

There are a great many forces in the environment of software development
projects that influence their performance. If an assessment of that perfor-

mance is to be made, information about these forces is necessary. Figure 2 ﬂ
depicts some of the classes of information required.

BN

External

OBJECTIVES rols &
STANDARDS Considerations
CONSTRAINTS
¥ QUALITY CONTROL FOR
Research
SOFTWARE DEVELOPMENT SYSTEM Data
SOFTWARE PROJECT .
DEVELOPMENT CONTROL Filter Control
PROCESS ADJUST- Process
CHANGES MENTS Control
Operation Data
o
M -
MANAGEMENT CONTROL OF |~ aorr [DATA
Data— COLLECTION
SOFTWARE DEVELOPMENT PROCESS FILTERS
I PROCESS SOFTWARE
| CONTROL DEVELOPMENT
_ DIRECTIVES DATA
R T T ey e e
| A | l
| 5 ’r I ' '
N L | s \L
SOFTWARE DEVELOPMENT PROCESS
ANALYSIS DESIGN IMPLEMENT TEST OPERATION

Figure 1. - SYSTEMIC INTERRELATIONSHIPS OF
SOFTWARE MANAGEMENT CONTROL AND
METHODOLOGICAL RESEARCH

EXTERNAL
ENVIRON-
MENT

|

INTERNAL

COMPOSITION AVAILABLE
PRIECT . coprees, AND < RESOURCES
ﬁEﬁ?gRE' | ORGANIZATION

STRESS
FACTORS

Figure 2. Software Development Project Environment

The internal composition and organization of the project strongly reflect the
impacts of the other forces. Evaluations of the suitability of the
composition and organization in meeting the demands of these impacts may be
the basis of interesting investigations. Internal managerial, working and
communication relationships are also of interest,

The external environment for the project consists largely of higher manage-
ment, project monitors, user organizations and subcontractors. Contract
provisions set working conditions. Relations with the customer and with
subcontractors can materially affect the amounts of communication and
cooperation that is experienced in getting information, getting concurrence
and arriving at decisions. The closeness of supervision by both management
and project monitors influences project behavior, and there may be many other
implications for relative project success in its relationships with its
environment, not the least being the project reporting requirements that this
study seeks to define. 3
The primary determinants of the size and composition of the project are the
size, .complexity and difficulty level of the software to be produced. Well-
understood, simple programs demand much less of the project than do programs
requiring innovations, high performanca criteria and complex interactions.

The primary determinant of the ease and efficiency with which the project
meets its work requirements is the level of the resources available to it.
Resources include the full range of manpower, equipment, work facilities,
tools and techniques, stores of information, and numerous other items and
services that it takes to perform the software development job. There is

a great deal of information that can be gathered about resources. Manpower
alone has many attributes such as various skills and skill levels, training,
experience, and knowledge of the application area and of the customer that
might influence how well the project meets its requirements. The speed,
power and capacity of the computer and the conditions of use certainly
affect efficiency, as does the convenience and comfort of the working facility.
The tools and techniques, both manual and automated, also contribute to
project effectiveness. Methodology evaluation is somewhat intangible, as is

1

an evaluation of the customer-supplied information available to the project]
in doing its job. Studies using the repository may provide the service of |
placing such evaluations on a more objective basis.

Perhaps of more importance than the absolute values of the various environ-
mental parameters is the relationships between them. If resources are rot
adequate to meet the demands of the work, stressful conditions result. If
time and dollars are short, if there are too few people available or if their
skill levels do not meet the demand for innovation, if there is not enough
computer power or time available, if the customer makes unreasonable demands

and puts pressure on for deliveries, performance may suffer. No stress may
be equally debilitating. That is, some pressure and some challenge is
desirable to motivate the project. The challenge for repository studies is
to find the points of equilibrium that lead to superior project performance,
optimal product quality, and effectiveness in allocation and expenditure of
resources.

2.1.3 Software Development Life-Cycle Model

Although current philosophy of a top-down approach to software system
implementation has complicated the issue, there is a more-or-less standard
model of the software system development process that is assumed for most
studies. Although the model is subject to both some compression and
expansion depending upon system size and difficulty, the closeness of
managerial control desired, and the vaﬁtagg point of the analyst, it is
generally accepted that the system development pndel involves a requirements
analysis phase; a system design phase, normall& divided into preliminary and
detailed design steps; a coding and debugging phase; an “integration and test
phase; and an installation phase.* An expansion of this model is shown in
Figure 3. Here the developmental phase is a portion of the entire life-cycle

*The Guidelines for Managing Information Processing Systems, USGAO,
compressess this process considerably by viewing it from the viewpoint
of total system development, including lengthy system concept formation
phases prior to the allocation of functions to a data system. Willmorth
in System Programming Management expands each phase into a set of sub-
activities and decision points.

a ki

12

" L3pOW 91247 9417 juawdo|dAdQ 34eMIJ0S § B4nbirg4

r 1334400 1338109 X30W
NOI1I3¥H0I ONY T T SIONVHI NOISIT 39NVHI D3 soivunseliD NOILVHNOIINDD
NDILYD1II00W NI/NIS Hd/uds NJS/d03 NIS/d23 SN = sl walsas | 0uLN0d
SN1d 00A /4d8/423 N$/dD3 ‘ONI "4NDD “ONI “4NDD GUVRIINY TVNOLLYHI40 9AINDY
$N1d 00A SN1d X30NI
(OINIVINIVI) INNasSVe ELTRENT] 8130044 INNasve SININ3HIND3Y INNasve
UNON YYD TWNOILYH340 19004 AHVNINITIHd 031v301V JINVWH04H3d IYNOILINDS
S1S31
suany
ANV M3IIAIY NOILVHN91INOD
NOILYII41TYND
s1531 43 1ia TVIISAHd b
ASVIONIS @ sis3s B 1YNOLLINNI®Y 734 nais20 M3IA3Y NDISIO M3IAZY M3IATY ™
SNOVLIVAIVAI waisAsony |\ SISILININO3S (1V311143) (AHYNIWIT34d) (N9IS30 WILSAS) SINIW3YIND3Y o
YNOILVY340 @ NOILVHOIINI © aNv LINne vine WiisAS @ JINVWEOSHI4 @ WaisAs®
VANV B3ISN W3LSASSNS
S1S31 03SIA3H @ 031311830 © soNISn ® TINNOSHId @
NOILVIIS1I34S NOILVIIA1D3dS
'NOILVANINAI00 35v8 vivo NOILYII134s
e Qaaiu3d @ / WANVWHISN @ ISVAVIVO @ SIIVIHIINI @ i dromt NOLLUIE30
SRR enbustu ISVa Vivo @ /S3UNQ3I0U4 HISN @ /SHOILIVEILNI HISA @ NiaaAs e W3ISAS 1300088
SuoIVaI41d0m 031411430 @ / S1INSIY 1S3L @ / SIUN0O3I0M4 1531 @ Nv1diS3le/ 3INVIIIV @ v » SVHe
0NV S1300W NOIL4INIS30 s3Inaow NOWVYII4193dS NOILYIII3dS [NOILVIIdID3dS SISATVAV ©
'SNOISHIA @ NDISYIA @ WYHO0Hd ® NOISI0 11v130 @/ NOISIOWILSAS @/ IINVWHO4HId @ ALIBISY3S @
JINVNIINIVA NOILV2131183) IN0YIIND B NOIS30 NDIS30 SISATVNY SISATVNY
NOILYY340 NOILYIIAINIA NOILINO0YS (ININOJWOD) (AUYNIWIT38d) SININIHIND3Y WISAS
NOILVIIVISNI NOILYOITVA IYVMLIOS V130 W31SAS 3INVINHO 3434 1VNDILYH34O0
1YNOILYHIJ0 $3SYHA INIWd013A3I0 IHYMLI0S 1YN143INOI
-
~ ” < o “
~ ” s C
B -
T z”
TYNOILVHId0 IVIN3ING013AI0 NOILVOITVA ONV NOILINIZ30 TWN143INOD -
A
T
SISVHI 31DAD 3417 WILSAS

of a system, and software development is a portion of all developmental
activities for a system. The conceptual or system definition phase that
precedes software development defines the operational requirements for the
system including those for subsystems. After development, the system is
expected to have a lengthy operational life during which it must be remodeled
to meet new or changed requirements, refurbished to include more advanced
technology and/or remove inefficiencies, and corrected for the errors that
show up during operations. In between these phases are the developmental
phases.

The model presented in Figure 3 has a number of features that have implica-
tions for a data collection system. First, software development is broken
into a series of phases. Second, each phase results in a set of products.
Third, the phase is ended by a formal review of the software products for
quality and conformance to prior specifications. Fourth, if the proposed
system content and structure (said to be a "representation" of the system

at that point) pass the review, the representation forms an approved baseline
configuration. Any proposed change or deviation from the baseline must also
be reviewed, and, if approved, becomes an integral part of the system defini-
tion at that stage. Fifth, there exists a definite mechanism over and above
the developmental project for certifying the software configuration,
approving and directing the inclusion of changes (both functional and
structural), and verifying and directing the correction of errors.

2.1.4 The Work Breakdown Structure

Although the life-cycle model is sufficiently general to cover all software
development efforts, measures based on such coarse categories are too
granular for close control or clear understanding for large projects. A
model used on military contracts to decompose the developmental job into a
more manageable task is the Work Breakdown Structure (WBS). As depicted in
Figure 4, the WBS factors the total system into major subsystems and sub-
components, relates these to functional operations (e.g., scftware develop-
ment phases), and ties the phases to finer, scheduled work packages or major
tasks. This model essentially ties together the project in terms of its
organizational elements and the two major aspects of project performance:

14

"34Nn30Nn43S |euotjeziuebu pue sgM 4O uorjeubajug

‘p aunbLy

b7}
‘0nuey

FdN1ONYLS NMOOXYINB NUOM

2% \m ..‘\w .
‘ L)!'f.i, e w....& 4‘ T
A
i L v 2% B, o S v\l o m— oz ﬁ
w?,_.,va N0 7 b 1 Ew hidas O <
\:..J = pue buu,riQ o
. o, '-Il S S —' o %
N! W0y \\Ww m | ubsag m
Rl ™] 2 o
_b\\b.o.hbnmll..ilulln_nl e A euy —uO_ M w
TR W s : g
3 C1T] s)G
_ e L b 1
————
L jdo 1|z
e %
iy 103821dWw0) by uey by uey AQuassy uey
100d§ jenq Jouny 21935 jing v 1387
]H h ~ x_ NOILVZINVOLO TVNOILONNS
, |
anuny — 1058 1AWOD uey € 1987
L
Sam L
Arowwng buiuresy aubu3 PRI
ejery
Sl g e
wesbosy L 1@A

FASCP/AFLCP 173-5, 31 March 1972.

*Source:

15

e

products and work. Two other aspects, the quality assurance program that
evaluates the quality of products and work and the managerial functions that
controls the operations of the project, differ only in intent from other
functional operations. They, too, have products and work and may be evaluated,
but largely in terms of their effects upon the products and work of the

other functions.

These interlacing hierarchies of organizations, products and work normally
form a matrix against which expenditures of time and manpower and other
resources are planned and recorded. This structure will be used to organize
and interrelate project performance data items in this report.

There is a hierarchical nature of structures, and it is necessary to select
an appropriate level for reporting. Organizations, for instance, may report
only from the top, i.e., as a single undivided project, or as subelements,
i.e., teams, groups, or individual workmen. For a project monitor or top
management, knowing how the project is performing may be a sufficiently
detailed report, but for a team leader, individual performance is important.
Some research questions may need detailed reports obtainable at particular
levels.

In the WBS in Figure 4, the product breakdown is the dominant factor.
Actually, since this decomposition is for a total system, one would not
normally break a software system into so many specific elements at project
initiation. That is, the objective of the performance requirements analysis
is to decompose requirements into their essential operational elements,
vhercas system design regroups these into data processing elements that cut
across requirements. Once defined, whether a logical element (i.e., function)
or physical element (i.e., program module), it is the function of configuration
management and quality assurance to ensure the integrity and completeness of
the successive representations. For the purpose of this study, only a
minimum number of system product levels have been defined. Although much
finer differentiation is possible, the levels that are proposed are:

16

System: An organized set of software modules and/or subsystems,
data base elements, and user procedures created to
perform a set of specific functions.

Subsystem: A subordinate system consisting of one or more interacting
modules, usually capable of operating independently of,
or asynchronously with, a controlling system. More
than one level of subsystems may exist, but are not
normal in a software system.

Module: A software entity that is discrete and identifiable with
respect to designing, compiling, loading, and combining
with other modules. Several levels of modularization
may exist.

A similar situation holds for the organization of work. On small projects,
a breakdown by project phase may be fine enough but a finer breakdown is
often desired. In structuring data for the repository, this study makes
provision for receiving data at several levels of detail. The proposed

levels are:

Project: A11 the work of the project as a single entity.

Phase: One of the recognized developmental phases of a software
development project: analysis, design, code, test.

Task: Normally, any developmental phase involves several Jesser
tasks, some of which may be coterminus with the phase,
or breakdowns of it, and some of which may be indepen-
dent of project phasing.

Activity: A major task that is usually broken into several subtasks
or activities, which in turn may be broken into
further subtasks.

Job: A single sustained effort or operation, usually of short

duration, such as a program compilation or preparation
of a report, usually scheduled and budgeted as a class

or as part of an activity, but not planned for a specific
date or frequency of occurrence.

S A S bt

17

In planning and performing work, work elements (all work breakdown entities)
receive a schedule and a budget (resource allocations). In practice, these
are not always isomorphic with organizational, product and work structure as
implied by Figure 4. That is, account numbers may cut across rather than
being specific to a given product, organization element and task. Provisions

must be made for this contingency but a standard structuring is desirable.

2.1.5 Performance Control

The objectives of management and quality assurance are to ensure the
efficiency and quality of performance. Performance is evaluated by comparing
the following values that are established for all items reflecting project
performance:

a. An estimated, projected or planned value established before the
work is performed. This value is input initially and/or
updated periodically, depending upon the reporting period.

b. An actual, real or experienced value established after the work
is performed or as accumulated to date, depending upon the
reporting period.

Although it is reasonable to evaluate the quality of work, quality assurance
usually deals with product quality evaluation. For the software configura-
tion (product breakdown) this evaluation consists of comparing the current
representation being reviewed to the past baselined configurations, including
all changes and corrections that have been officially included in baselined
representations. The configurations may be represented by listed and
annotated elements, by detailed specifications or by actual programs and 3
manuals. Deviations (errors) may be detected during formal or informal
review or test or during operational use. Both the deficiencies and the
corrective actions must be recorded along with costs and elapsed time if
appropriate reliability and quality information is to be collected.

Efficiency of performance is normally assessed by noting deviations (variances)
of actual performance time and costs from those planned. Both for products
and work, however, derived measures are often more interesting. That

18 J

is, reliability and maintainability are more meaningful data than raw
error rates, and "value earned" is a better index of performance than
schedule and cost variance.

2.2 REPOSITORY OPERATIONAL CONCEPT

The manner in which the Software Lata Collection System is to be used will
be decisive in determining many features of the system. First, the system
may be useful for both project management and for methodology research.
Second, the information in the repository must be equally available to all
qualified users. This requirement has serious implications concerning the
privacy of the data and the desensitization of the data prior to its release
to users. Third, the system may be in existence over a period of years in
order to acquire sufficient data to permit reliable comparisons to be made.

. The data processing industry is still in a period of rapid growth and tech-

nological change and evolution of the repository may be considerable over
the years. For instance, at the onset of the repository operation it may be
technically feasible to collect only a subset of all the data that might

be desirable. As collection techniques improve, as they might well through
further instrumentation of production tools, greater automation of the soft-
ware development process, better monitoring tools, and further product
evaluations tools, many more variables (and a much greater data volume)
might have to be added to the data base.

The system must be flexible in adjusting to user turnover, different modes
of interaction, and unforeseen research demands.

2.2.1 Project Management

The data collected must support the needs of project management even though
it appears that no direct support of project management is to be supplied by
the repository. The basic goals of project management are to:

[Form and maintain adequate plans for the conduct of the
project and for the definition of the product.

° Acquire and deploy personnel and other resources sufficient
to achieve the plans.

19

|
i
|

® Monitor performance to insure that planned performance goals
are being met.

® Adjust plans and redeploy forces if performance is unsatisfactory
or exceeds expectations.

(] Provide a stable and certain working environment in terms of
controlling excessive change to work plans, product plans, and
resource utilization, e.g., personnel turnover and reassign-
ment, while using well-structured control procedures and
decision mechanisms.

® Deliver the promised product on time and within budget.

As the project team level, control is exercised day-by-day if not hour-to-
hour. For larger projects engaging a hierarchy of teams and specialized
organizational units, management may not require as fine planning, monitoring
or controlling. Top management and customer program management offices may
need even coarser information. Individuals and corporations resist providing
any more operational information than is strictly required. More is regarded
as non-productive and an invasion of privacy. The level of detail submitted
by the project to the repository has been a prime concern of this study.

2.2.2 Research

The data collection from participating software development projects must
support the needs of basic research into programmer productivity, program
reliability and the software development process. Note that much of the
environmental information that a research program may require for valid
comparison of projects is "given" for the individual project and would not
be recorded unless a special effort is made to collect it. Also note that
much of the close surveillance data needed for management control may not

be pertinent to a research program. Many of the items that a research study
might want to know, such as the number of day-to-day problems, the rigidity
of enforcement of technical and managerial standards, and/or the particular
employement of tocls and techniques to solve a problem or do a job, are lost

20

in the daily conduct of business. In view of organizational resistance to
the collection of data beyond that necessary to conduct the the project
operation, there must be extra motivation, as in the conduct of an experi-
ment, or extra compensation to pay for the data collection effort. Coercion
may be exerted but is likely to meet with resistance, if not active sabotage,
falsification, and evasion.

2.2.3 Desensitization, Privacy, and Security

: The data collected for research purposes must be available to all qualified i
users, but must not yield information sensitive to a particular supplier.
Since anonymity cannot be realisitically applied to data gathered for project
management purposes, either some means of desensitizing it must exist before
entry into the publicly available store or security measures must be
exercised to prevent unauthorized access to proprietary and sensitive
information. Since adequate guarantees of absolute security cannot realisti-
cally be advanced now or in the foreseeable future, it would appear that
prescreening, filtering or purging of sensitive information must be done in

advance.

The data base must also be protected from unauthorized and even malicious
alteration. That is, persons should not be permitted to enter false data

nor to alter, without special permission, data already stored. Some provisions
for change must be made to correct errors in data entry and/or to accomplish
any purging, summarization or other processing that the data base administra-
tor might need to do to preserve anonymity or remove undesired data.

+ A configuration that offers a reasonable degree of privacy is to buffer all
requests for information from the repository through a support facility at

the repository. Data entry might still be done automatically but users would
not be permitted direct access to the data. Instead, all requests for service
would be submitted to a group of analysts who would be responsible for

21

ensuring the desensitization of the data before release to a requesting
organization. Another alternative would be to provide a desensitized
research data base that could be available for public access.

2.2.4 Growth Potential

If data is gathered over a period of years from a large number of projects
and if the voluminous data generated by automatic tools is stored, a very
large data base will accumulate. Since the data processing industry is still
growing rapidly as ever more applications are found, and since continued
technological innovation may be expected to create even more automated tools,
an even faster growth rate must be expected.

Further, as the volume of data grows, the variety of data types will also
expand. The initial data set may be a conservative one due to both technical
and economic limits on collection capability. However, the desire to
investigate new research areas and the development of new technology may
introduce new data types. Data rejected as infeasible in the initial set
may readily be economically available as new collection technology is
introduced.

Therefore, both natural growth and the development of currently unforeseen
demands require the data collection system and the repository to be able to
support a much higher level of activity than it initially expects.

2.2.5 Flexibility

The data collection system and repository must be flexible to meet new and
varied demands. It is expected that the Software Data Repository will be
maintained in a central location and will initially reside in a Honeywell 6180
computer. Data will be entered into the repository from software development
projects performed internally by USAF personnel and externally by contractor
personnel. Projects will be located throughout the United States and may

also be located on foreign soil. The precise number of projects, their likely
duration, location, size and intent will vary as projects start and finish

22

and new contacts are let. Data from some projects will reflect experimental
use of advances in techniques and methodologies that include new data types.

Flexibility is also needed because of the changing data requirements. Unfore-
seen research requirements, new analyses, and new treatments of data will
evolve. There may also be shifts in policy concerning the data that is
collected; for instance, a class of data may prove to have little or no
relativity to productivity or program quality.

In view of the managerial and desensitization issues stated above, there may
be a requirement to support project-specific subsets of data, and/or a
special project may require, for security reasons or to avoid contamination
of the larger data base, special subsets of data. Hence, a flexibility in
meeting new requirements, situations, and modifications is required of the
data collection system.

23

%

3 DATA COLLECTION TECHNOLOGY

The design of an adequate software data collection system is contingent upon
the understanding of the current technology in data collection, storage and
retrieval, and upon appreciation of some of the problems and issues inherent
in such a data collection system. Based upon the models reflecting the

scope and environment of the software development process discussed in

Section 2, the study examined, first, the problems that are encountered in
acquiring reliable software production data; second, the techniques that are
currently employed to collect such data for military software development
projects; and, third, the opportunities for improvement that might lie in such
automatic collection approaches as software implementation monitors.

The guidance to be had from these studies can then be applied to the develop-
ment of data collection procedures, reporting formats, data types and
analytic techniques.

3.1 PROBLEMS OF DATA ACQUISITION

Data collection has, and will continue to encounter, some serious problems
that cause software development data to be inaccurate, unreliable or have
doubtful validity. One objective of this study was to investigate the
impacts of these problems and to suggest solutions to them. To assist in
this analysis, the project (a) searched the literature for previous studies
of data collection problems, (b) included many queries concerning such
difficulties in the survey of project managers, and (c) in December 1975,
held a conference of persons associated with the proposed RADC repository,
the USAF Satellite Control Facility repository, and the Army Advanced
Technology Center repository to discuss data collection problems.

As a result of the literature survey covered in Volume/002, of the project
manager survey in Volume/005, and of the conference in Volume/006, the
principle problems facing a software data collection system are:

24

0 Mensuration difficulties

s Instrumentation effects

® Unreliability of measures
° Reluctance to release data
) Cost factors

° Systemic problems

3.1.) Mensuration Difficulties

The problems of mensuration are classes as (a) measurement, (b) instrumen-
tation and (c) interpretation. Measurement involves determining what informa-
tion is needed concerning the complex of project activities, products,
reviews, resources and management controls delineated in the previous section,
and defining the measures that may be taken to derive that information. A
huge number of measures could be taken; however, not only is too much data
costly to collect and analyze, but much of it may be of questionable pertinence.
Collecting data just because it is readily available and/or cheap is not
sufficient; it must be reliable and useful. The problem is to define a set
of data that is possible to collect and that is useful to management and that
will support research projects. The main objective of this project is to
define such measures.

Instrumentation involves the when, where, and how of data collection - the
insertion of probes into the process to be measured. The measurement method,
the frequency of recording, the time and location of collection, the

fineness of detail, the organizational level and the filtering and combining
of data in collection are among the instrumentation problems addressed in

this study. The principle objectives are to obtain measures that are as
objective as possible and that interfere with the software development process
as little as possible. The ultimate method is completely automated collection,
but practical considerations require that much more subjective, intuitive
measures be accepted.

Interpretation involves determining the meaning, value and importance of

the measures in evaluating project performance and product quality. In short,
assigning weights to the measures for various purposes. While a great deal

of attentior was given to the meaningfulness of measures in the compilation
of recommended and potential measures, exact weights depend greatly upon
evaluation goals and situational factors. Except for collection priority,
recommendations concerning the importance of the measures are not made.

3.1.2 Instrumentation Effects

The act of measuring can influence the behavior of the process measured, a
phenomenon known as "Heisenberg Effects". The motivating effects of knowing
that one is in an experiment that causes participants to work harder and
perform better are called "Hawthorne Effects". In short, whether the
instrumentation has a deleterious effect such as consuming working time or
irritating workmen by its interference or a facilitating effect such as
creating additional motivation, these effects destroy the comparability of
measures taken under one condition to those taken under another.

Feedback effects from knowing the results of evaluations probably cannot be
avoided, but not knowing the results may also influence behavior. Although
it may not be possible to avoid all effects, they may be minimized by
collecting standard, objective data with as little fanfare or interruption

as possible. Hence, the more automation and the more observations by indepen-
dent auditors that are used the better. In order for measures from different
projects to be comparable, they should be taken under equally biasing or
motivating circumstance. Emphasis should be placed on evaluations of
deliverable products and observable events that can be made without inter-
ference with the software development tasks, rather than on preparing reports
and justifications of current status.

.13 Unreliability of Measures

Without reliable measures, measures that mean the same thing each time they
are taken, valid predictions and valid comparisons cannot be made. Although
subjectivity and inaccuracies contribute to error variance, the principle
problem in defining the measures to collect lies in a lack of standardization.
Differences in the measures collected arise from non-standard terminology,
differing definitions of measures, differences in the collection procedures
and conditions, and variation in the organization and functioning of the
software development facility and process that are measured. (Project
differences and variations in the data collected are seen as the most univer-
sal bar to software methodology research by project managers.)

Two approaches are possible to attaining more reliable measures: standard-
ization and factorization. Standardization seeks to control variation by
holding everything constant; factorization by measuring the factors that
cause variation and trying to account for, or partial out, their effects on
the measures. In this study, both approaches to more reliable measures are
taken. Standard measures are defined and standard terminology is used and
advocated. On the other hand, the study cannot force all projects, data
collection methods, and environmental conditions into a single mold and
indeed it is undesirable to do so. Hence, the study recommends collecting a
considerable aumber of measures of environmental conditions both for the
project and for the measurement conditions. As much subjectivity as possible
will be removed from the measures; that is, objective measures will be
defined where possible, but some measures will continue to be subjective
ratings.

3.1.4 Reluctance to Release Data

Resistance to management control, as evidenced by a reluctance to provide
information on project performance at all levels of management, is an almost
universal problem. Control systems are seen as coercive and threatening (and
often are), evoking resistance behavior that varies from reluctance and
reduced cooperativeness to outright falsification of data and sabotage of

the collection system. Project personnel feel their privacy is being

invaded and that punitive measures will result from communicating bad news.
Corporations are equally reluctant to invite punishment and fear that
proprietary information and trade secrets will be revealed. Very real
problems exist in obtaining honest data if heads roll as a result of giving
it.

There are some suggested procedures for minimizing resistance; while
effective when performed by project monitors and managers, it is difficult

to ensure their effectivity by any data collection system however well designed.
The members of the development project should understand the goals of the
data collection effort and the utility of each measure. To the greatest
extent possible, the project members should participate in the setting of
project goals, and at the least should know what is expected of them and what
the rewards and punishments are for meeting or noi meeting those goals.
Reporting errors and performance variance should not be a finger-pointing,
blame-assigning process, but rather an effort to solve problems, avoid
trouble and improve the tools and techniques used in performing a project.

To the extent possible, projects and project members should be absolved of
personally reporting information that would reflect, favorably or unfavorably,
on their performance. That is, reporting should be as automatic and as
impersonal as possible.

Obviously, these are measures that seek to make the data collection system as
non-threatening and as objective as possible. It is equally obvious that

the measures depend upon the project monitor and the management of the project
to initiate and carry them out. Not all managers are equally skilled in
doing so and many managers believe that the only effective management is
tough-minded and coercive, punishing any infractions with decisive action.
Under these circumstances, even though project performance may be improved by
the strong management, reporting data may be expected to reflect the efforts
of projects and project personnel to avoid punishment.

28

e

3.1.5 Cost Factors

Although the overt costs of a formal project and configuration management
system are quite small (estimated generally at 3% of project costs), the
hidden costs in terms of project member time to prepare reports and of
interference with technical work may be much larger. Disruptions to the
train of thought may not be as serious an interference with project progress
as is the time taken away from work and the irksomeness of preparing reports,
but 10% of the project managers surveyed thought it did occur. For the data
collection system, gathering research data is seen as over and above that
necessary for the management of the project. Project resistance to incurring
the additional expense in project interference and extra effort may be
expected.

Two general actions may be taken to counter the costs of data collection:
first, actions to minimize the costs, and second, directly defraying the
costs via contract coverage. Automation, standardization and more granular
(coarser) data are seen as ways to reduce costs. Direct coverage of data
collection costs in the contract not only pays for the extra effort involved,
but provides motivation for reporting and removes much of the reluctance to
do so. Independent audit and data collection agencies and procedures may

not only reduce the degree of interference with the technical work but may
increase the objectivity of the measures. Some of the costs and frustrations
encountered in data collection are engendered by lack of understanding of
data collection goals, measures and procedures. A standard, well-understood,
widely-used system would not only make reporting easier, but reduce
frustration and data unreliability. Automation may yield a plethora of
cheap data, but is itself expensive to develop and install in a diversity of
projects. Further, most automated data collection is very fine grain and
specific to a problem and not generally pertinent to project performance.
However, increased mechanization of data collection through project monitor
systems provides a sort of automation that may be expected to spread.

29

3.1.6 Systemic Problems

There -are several other problems that @ = inherent in the normal behavior
of systems. These include delayed responses, filtering effects, averaging
and summation, forecasting efficiency, and stability.

Time delays occur between the occurrence of an event, the reporting of the
event, and the reaction to it. Inappropriate response may then be made to
situations that have already been corrected or grown worse. This delay
can be minimized by maximizing automation.

Information that passes through several level :an get distorted by averaging
or interpreting. As much objectivity as possivle should be sought and
algorithms should be used for combining, filtering, and averaging data to
remove personal bias.

Instability is caused by personnel turnover, requirements changes, and
incorrect responses. This is a problem without an obvious solution. Inter-
pretation of data must be done with the knowledge that the system measured
is not static.

Forecasting is not an exact scierce. For best results, planning and fore-
casting should be iterative. Contracts of the Cost Plus Award Fee and Cost
Plus Incentive Fee types allow cyclical reestimating and provide an
incentive to complete the job within a reasonable time period.

307 Problem Summary

The degree of seriousness of the problems depends in part on the types of data
collected. For instance, in the Survey (Volume/005), it was found that
managers were most reluctant to release cost data and most willing to release
software problem data, 1.e., change and error statistics. Performance and
productivity data, including software quality evaluations, were deemed the
most useful measures for management, but were also deemed most subject to

the distorting effects of optimism, bias and subjective processing during
reduction for summary reporting.

30

Although reluctance to release data that might reflect negatively upon
project performance and general resistance to managerial control are univer-
sal problems for which there is currently no apparent final solutions, the
answers to other problems found in more objective measurement and standard
practices also serve to alleviate resistance. A standard, well-established,
well-understood data collection system - procedures, formats and measures -
not only provides project comparability for research but also improves

data integrity and reduces the costs of collection.

A detailed discussion of these factors and their impacts on software develop-
ment data collection will be found in Volume 002 of this series,
"An Analysis of Software Data Collection Problems and Current Capabilities."

3.2 CURRENT DATA COLLECTION TECHNIQUES

In general, military standards, regulations and directives provide for a full
range of project performance and configuration management practices, but do
not specify specific standards. Instead, many standards, procedures,

and reporting forms to provide the desired level of control are established
either by contractor, project management plans or program office directives.
Consequently, a considerable range of software data collection practices
exist over the full scope of military software projects.

In studying the implications of current data collection practices, SDC
reviewed not only such military standards as MIL-STD-483 and AFR 800-14,

but more detailed procedures from project management plans, plus instructions
issued by software acquisition and maintenance agencies. The results of

this investigation covering reporting practices for performance measures,
configuration control, documentation practices, and product quality

reviews are reported in Volume/002. Numerous examplies of special reports
and data collection forms are given there.

E 3.2.) Environmental Characteristics f

No explicit data items describing a project are specified for collection by

most projects except estimates of system size and resource requirements. In
the past, research into the impact of such environmental factors as customer
relations, familiarity with the area of application and the customer, project
organization and personnel mix, had to depend upon retrieval of this infor-
mation from project plans, contracts and progress reports, or from the
personal recollections of participants. Since many projects diverge

from their original implementation plans and since after-the-fact estimates
frequently reflect much strong feeling and bias, these data have been found 1
to be highly unreliable, as well as answering no definitive questions]
concerning environmental impacts. So far as research support is concerned,
this is a serious deficiency in current data collection practices.

3.2.2 Project Performance Characteristics

Military practices in the cnllection of project performance characteristics i
were found to be, in general, more well-rounded than most commercial practices.
The basic approach is through Work Breakdown Structures (WBS) and Resource
Utilization reports. The WBS uses both a product breakdown (configuration
Items) at top levels and task (for function) breakdown at lower levels to

help structure and organize performance reporting. Functional tasks are
assigned to organizational elements and the account numbers used in reporting
are tied to WBS element identification.

Unfortunately, not all projects use WBS to structure and organize accounts
Reporting is often confined to the top level configuration items, entailing
much summarization of data with attendent ambiguity of detail. As used, : #
the WBS also tends to be somewhat awkward and inflexible (difficult to
change). That is, it does not reflect the changing configurations in
successive system representations. Also, if the initial WBS is very detailed
it may represent premature design decisions that can hamper both progress

and reporting. -

)
it
|
L
|

At one time, PERT schedule planning and reporting was very strongly advocated
for military projects and is still recommended, but a more broader range of
performance reporting schemes are now advocated. Reporting frequency ranges
from monthly to quarterly; granularity of information ranges from major

tasks or functions to project phase and principle configuration items.

Hence, so far as data integrity is concerned, reporting delays and summariza-
tion permit many systemic effects to operate.

Resource utilization, where used, is generally restricted to manpower
utilization reports, but computer time utilization may also be included.
Unless otherwise required, most resource reporting is given as dollar
costs. Even where required, reports tend to give actual utilization for
past performance and projected utilization for future estimates. Unless
historical records are kept, it is difficult to compare actual to planned
performance. Although some contrary examples were found, projects seldom
collect resource expenditures against system modifications as reflected in
engineering changes or error corrections. '

3.2.3 Configuration Characteristics

Although several military agencies have specified configuration status
reporting requirements, the full range of reporting is seldom actually
required or enforced. Some agencies do practice strict configuration
controls (the USAF Satellite Control Facility, for example), but the

practice is not generally employed. Hence, although it is alleged that

high change rates and "soft" baseline control are frequent causes o‘ cost
and schedule overrun, actual statistics are not widely available. For most
systems, provision is not made to accumulate error reports into configuration
status reports, and reliability studies are usually done outside the regular
status reporting system - that is, they are special efforts.

33

ites

et A e

4
1}

3.2.4 Quality Control Data

Quality control for military software projects is exercised through a series
of specified reviews, audits and tests. Reviews and tests normally establish
the excellence of the product and baseline its configurational content and
structure. For research purposes, it would be desirable to have records of
all alleged discrepancies detected during a review and some history of their
processing and disposition available. Some projects do publish review minutes
and/or action items and many use software problem reports (error reports)
during integration and system testing, but normally these are present only

if the testing is done by an independent test agency.

Although test documentation tends to be fairly formal. providing a firm
basis for issuing an error report (failure to meet a test), review criteria
are not often formally stated. Hence, reviews tend to be quite variable and
subjective, resulting in noncomparable data.

3.2.5 Summary of Current Military Practices

While it is true that there are a large number of military standards, regul-
ations and instructions dealing with project administration and configura-
tion acceunting, actual utilization and enforcement of the recommended
practices is often lax. There is a relatively low level of standardization
in the data items, report formats, and reporting procedures. Approximately
the same software development model is used by almost all regulatory
agencies, but the many minor differences represent a major obstacle to basing
a software data repository on current practices. In order to build a software
data collection system around current manual procedures, additional data
requirements would have to built into contracts, and standard report forms
and collection procedures would be needed to derive a coherent set of data.
Further, guides for both regulatory documentation and the proposed data
collection system would be necessary to ensure standard interpretation of
regulations and standardization of the information collected.

34

3.3 DATA COLLECTION MONITOR SYSTEMS

In recent years, a number of data collection systems have been proposed and/
or developed. This study looked at several of the systems (both prepared or
in use), including SDC's IMPACT and MITRE's SIMON, that employed data
collection monitor systems. While it is somewhat difficult to compare

systems that were developed with differing objectives and scopes of applica-
bility, it is possible to make a comparative evaluation if current military
practices and this study's derived data requirements are taken as the criteria
for analysis. The detailed evaluation of these systems is contained in
Volume/002, but some of the conclusions drawn from this study is summarized
below.

3.3.1 IMPACT

IMPACT is a software data collection monitor designed specifically for software
project management. Of the systems evaluated, IMPACT collects the most
balanced set of project control, configuration control and quality control
data. However, it collects only a minimal amount of environmental data.

IMPACT is a very flexible and comprehensive tool, but using it to its full
capacity demands a staggering volume of input. The system flexibility must

be offset by detailed user manuals and examples. Automatic data acquisition
consists of a 1og of operations and computer time accumulated from the

program library executive.

3.3.2 SIMON

The SIMON system is geared to a somewhat more restricted model of software
development. Schedule control is aimed at project phases rather than
individual tasks; configuration accounting is aimed at individual program
modules and ignores most of the provisions of military configuration status
accounts. Although SIMON is geared to collect limited data for research into
factors affecting software quality, the level of detail seems insufficient to
support reliability research. However, SIMON does have an interface with
software production and analytic tools, obtaining such information as system
structure and set-used tables. Complexity measures of software programs
will be an important data set when adequately developed and integrated into
the operational system. 35

3.3.3 BMDATC Quantitative Data Base

The Army Ballistic Missile Divisions Advanced Technology Center's Quantitative
Data Base has quite limited research objectives, but is intended to provide
software development data from BMDATC associated contractors and the Advanced
Research Center (ARC) contractor. The limited project performance data
includes mandays and computer time spent by configuration item and project
phase. It records changes and error reports and tracks resources expended on
diagnosis, analysis and implementation of modifications. It also gathers
module and test statistics, but does not produce configuration status reports
per se. Although intended for research on programming methodology, such
project environment data is recorded independently of the established data
base and is consequently not available for automatic retrieval and analytic
work.

3.3.4 IBM Management Data Collection and Reporting System

This proposed system is oriented toward the IBM structured programming
software development model, and may not be applicable to investigation of
other techniques without considerable expansion. The information collected

is after-the-fact and not intended to support project management or configur-
ation control. The idea of successive baselined system representations
(configurations) is not obviously supported since milestones are not overtly
identified. Personnel assignments and schedule maintenance are not specified,
and not monitored by the system. No connection is made between products and
project activities, resulting in a lack of data necessary to support
productivity analyses. Error statistics, module statistics

and modifications are collected, as in most monitor systems, but are not cast
in the military configuration accounting mold used by most of the projects
that will be supporting the RADC Software Data Repository.

H 3.3.5 TRW Software Reliability Study

This research study had the very limited objectives of a detailed study of
software error types, techniques for detecting and diagnosising errors, and
improvements in software reliability Since the study is not concerned with
collecting other software development data, little can be said about the
overall adequacy of data collection with regards to the RADC repository. The
TRW study does yield insights into the benefits and costs of collecting a
detailed sample of error data. Not only did an extensive classification of
errors result (perhaps more detailed than would be useful for most projects),
but so did guidance on collection and analysis procedures and interpretation
of error analyses. For reliability modeling, more extensive operational
information of the software system and more information on the types and
amounts of testing employed should be collected. As an indicator of the
amount of time and effort that must go into detailed data collection, the
study has real value. Data collection and analysis do have associated
expenses. This study gives an indication of the amount of effort required
to set up and administer a data collection system.

3.3.6 Evaluation of Software Monitors

While there is no one system yet available that provides all the capabilities
that would be desirable to meet RADC's data collection requirements, the
software monitor approach is a valuable asset to a collection system.

IMPACT demonstrates the tremendous amount of data involved in the detailed
planning and control of a software development project. SIMON illustrates
acquisition of data through the integration of the project monitor with
programming support tools, as does IBM's proposed system with the program
support library. The TRW Reliability Study illustrates the amount and type

of work that needs to be done to properly delineate the range and organization
of each of the parameters involved in the study of software quality.
Although there are major differences in the operating philosophies and :
structures of these monitors, there is a large commonality in the data items g
collected.
k.
37
¢
i 1

This study concludes that one of the most effective ways of enforcing stand-
ardization of data items, collection procedures and reporting formats is
through a standard project monitor system. Much work remains to be done in
terms of the details of data base structure and content, integration with
program production library operations, and utilization of data obtained from
instrumented programming support and program analysis tools, but the ultimate
inclusion of project monitors in the software data collection system is
strongly recommended.

3.4 EVALUATION OF REPORTING FORMATS AND DATA TYPES

In addition to the data forms and report formats utilized by the various
project monitor systems and specified by the military standards and regula-
tions, this study evaluated packages of reporting forms used by several internal
SDC projects, some from the IBM Federal Systems Division, and by the structured
programming test project at Vandenberg AFB. As with the project monitors,
some of these reporting formats were intended for both research and project
management. Where the forms were intended for research, more environmental
data were collected. However, these data collections tended also to be more
summary and after-the-fact than those intended primarily for immediate manage-
ment objectives. Although the same classes of data were generally collected,
the collection and report formats varied a great deal. If a viable software
data repository is to be realized, standard reporting formats are necessary.

3.4.1 Environmental Data

Very little environmental or project description data are collected by either
project monitors, military program offices or any of the projects that the
study investigated, except the Vandenberg experiment. Hence, although these
are the variables that many investigators and theorists believed most
influencial in determining productivity, few specific environmental data
types are readily available for application to the needs of the RADC data
collection system.

38

Many of the data items associated with project environment descriptions tend

to be subjective opinion and must be backed up by explanatory material to be
understandable or comparable. In the area of customer relations, for instance,
listing the type of contract is an objective parameter, but evaluation of the
auality of requirements specifications, customer interaction, adequacy of
personnel skills, organization effectiveness and other evaluations of risk

and stress are quite subjective parametérs.

Evaluations of the organization and constitution of the resources of the
project - personnel, machines, and program tools - are more objective
parameters. Skill levels, years of experience, and education are easily
identified, as are the kinds and numbers of machines and support programs.
Ratings of the actual adequacy of these resources in satisfying the needs of
the project, however, are much more subjective and their reliability is
questionable.

There is also some objective information that can be obtained about program-
ming methodology, such as the type of technique, where the technique was
applied in the development process, and the cost of acquisition and utiliza-
tion. Because of the diversity of methodologies actually employed, a specific
use of a technique should be further described or the researcher cannot
determine the extent to which the technique or procedure was actually
followed.

In most of the studies involving environmental factors as reported in the
literature (see Volume/003), the data gathered was after-the-fact reports.

To obtain a reasonable evaluation of environmental factors, one needs at

least an original estimate of what the project thought its environment and
resources would be and a final appraisal of the actual project attributes.
Since environments are dynamic, it might also be profitable to obtain inter-
mediate estimates for those modules of data that are affected whenever major
changes occur. For current systems, very few of these environmental parameters
are collected; where items are collected, there is almost no standardization.

39

3.4.2 Performance Data

Almost every system investigated collected performance data of some sort.
While the information collected is similar - projected and actual schedule
performance and resource expenditures - reporting formats vary greatly. For
management reporting, the widespread use of PERT - type systems has fostered
a report format generally called a "management summary". In a management
summary, work activities are listed with scheduled start and completion dates,
or durations, an indication of actual performance in relation to planned
performance, and a positive or negative variance. Allocated and actual
resource expenditures are also included with their variance. The schedule
performance is frequently illustrated with a chart that depicts the schedule
points. The activity data reported may or may not be associated with a
particular product.

Obviously, a management summary represents summarized and processed data
whether produced manually or by a project monitor. Raw data is usually
collected from several sources, including task orders, cost logs, computer
logs, and schedule reports. Task orders may contain prose descriptions of
the jobs to be done, or they may refer to standard tasks or portions of a
contract statement of work. For many projects, the tasks reported are of the
semi-standard project phases.

Since performance data is used for management control purposes, it is normally
reported frequently, such as weekly for internal control and monthly for
external control. In some instances, direct evaluations of productivity in
terms of "value earned" (production variance divided by resources expended)

is calculated, usually translated into a common base of the dollar value of
the product and resources. If the production units are lines of code or pages
of documents, a reasonably objective value earned is pratical despite the
likely variability in 'value' due to product complexity and difficulty.

40

3.4.3 Configuration Data

The relatively elaborate configuration control records and configuration
status reporting procedures prescribed for large development projects are

not often used by smaller projects. In general, even where formal engineering
change and discrepancy reporting procedures are used, modifications are
accounted for separately rather than associated with the products modified.
IMPACT is the only automatic monitor system examined that offers a config-
uration accounting capability, either against specification documents or
against identified configuration of functional, design and module represen-
tations.

The processing of proposed modifications (changes or error corrections) varies
from being a very formal system-the problem report or modification request

is submitted to a configuration control board clerk who assigns an account
number; logs it in the system; distributes it for review or investigation;
logs in replies; places it on the agenda of the configuration control board;
records the decisions of the board; updates the official copy of the modifica-
tion request for any changes as a result of the investigation; logs any change
of status that may occur in the processing of the request; determines the
product representation and version affected by the modification; provides
change notice identifiers when the modifications to specifications, program
modules, and other products are available; and logs the release of the
modifications, including the version and mod identifiers of the particular
products that the change affected. In practice, little of these activities
appears in official reports except the request identifier, the product
affected, the current status, and the change notice identifier.

If change control operates effectively, regular configuration status reports
will be issued, usually at monthly intervals. If intermediate status is

not kept, the only record is the request and notice of change. If a program
library operates, library listings of the program mods belonging to each
version and release of a system may be issued.

4

At a minimum, the problem report proposing a modification and the change
notice giving the disposition of the request shouid be monitored. In a more
elaborate system, coatrol ﬁogs and status change (update) forms may be used.
Al11 this information may be reported in configuration status and change
status reports, including the official processing steps that are scheduled
and logged.

3.4.4 (Quality Control Data

Little data is currently recorded for project reviews, for data reflecting
the scheduling and passing of reviews. For research purposes, it is
necessary to have an index of product quality, such as the number of
deficiencies detected per product, and/or an index of the seriousness of the
deficiencies, such as the time to resolve or revise the problems. While some
projects do file problem reports, issue Action Items, or publish minutes

and comments, the general mode of operation attempts to avoid this process,
if possible.

Problem reports are quite widely utilized for product tests. Less commonly
used are records reflecting test case/procedure failed and/or the function
failed. In some instance as in IMPACT, provision is made for recording the
number of passes made at a test, the test results (pass/fails), and the
amounts of computer time expended.

Almost no instances were found in military projecis or project monitors where
run statistics were kept on systems in operational status. Neither failure
rates, mean time between failures or operational evaluation results enter
software data collection systems. Some systems do account for errors
detected and corrected and some record cost information. However, the records
kept are not adequate to support a wide range of reliability research,
resulting in the need for every investigation of reliability to engage in a
special data collection effort.

A“

42

Bt e

4. DATA REQUIREMENTS FOR PRODUCTIVITY AND RELIABILITY STUDIES

One of the central issues in this study has been to determine what data items
to collect to evaluate project productivity, program reliability and software
development costs. Obviously, it is impossible to foresee data that represents
all aspects of the software development cycle. That is, at some time there
may be a research requirement that encompasses a set of data items not
considered important to the repository currently planned. It has been
recommended that the repository remain flexible and extendable to encompass
such data in the event it becomes important.

For the most part, selection of the data items has been based upon the utility
of the parameters for the specific research objectives stated above. While

some attention has been focused on the accessibility and costs of collecting
specific data parameters, these have been secondary considerations in determining
whether an item should be included in the collection process. In determining
utility, SDC leaned heavily not only upon the literature, but upon priorities

of data importance established by both RADC and SDC perscnnel.

A discussion of the justifications for considering sets of related data
parameters are presented in Volume 003, Data Requirements for Productivity
and Reliability Studies. The recommendations concerning specific data
variables are presented in the Compendium of Procedures and Parameters,
Volume 007 of the Data Collection Study. A brief summation of the
investigations leading to the data requirements recommendations is
presented below.

4.1 PRODUCTIVITY ANALYSES

The growing field of software development, which is involving all aspects

of daily living and demanding ever more expenditures for the production

of software, has focused wide attention on determining the factors that
impact individual and joint productivity. Many studies in the past have been
undertaken to identify factors relating to productivity with the result that
a myriad of components are felt to be important contributors to productivity

43

and performance. For the most part, productivity involves human factors
that are not only difficult to define but also to measure. Productivity
itself is defined in various ways, further complicating attempts to measure
it. The costs of developing software are currently estimated at $15-20

per line of code (with even higher rates for complex systems), while the
reliability of the code produced is sometimes measured at the low rate of
one error per 100 lines of code. For expenditures of that nature, both
project productivity and software reliability are seen to be of prime impor-
tance to the overall software development process.

In the survey of the literature addressing project productivity, many factors
were found to impact productivity by many different authors. Consensus

of opinion is rare and it appears that human factors scientists have arrived
at their individual opinions by direct observations rather than by use of
instruments and/or systematic procedures that measure or assess productivity.
On the other hand, while there is a definite requirement for assessment of
this type, little is currently being done in the software industry to
accumulate and analyze large volumes of data consistantly and methodically
obtained that supports productivity studies directed towards improving the
quantity of work produced. It is obvious that a data base of this nature
requires a large financial as well as an intellectural commitment that may
result in nothing more than a reiteration of the results of previous work.
However, after examining the literautre and questioning a sample of software

project managers, both by questionnaire and by symposium discussion, this
study supports the concept of a software data repository to support research
of this nature. The lack of a data base containing a large sample of
diversified software development data that has been collected in a methodical,]
standardized format on a consistent and timely basis may be the element most)
responsible for the lack of conclusive results in past productivity studies,
as well as other studies, such as reliability, cost estimate, and software
quality analyses.

a4

s S ko AR

it i

- -

While it is possible to Tist key factors used in past productivity studies
(see Volume 003 of this series), quantification and subsequent collection
of the data remains a most difficult problem. For example, communication
is considered by several authors tqQ be a key factor in performance. Measure-
ment of the degree, extent, and content of communication within a project
is an obviously difficult, if not impossible, measure to obtain. Instead,
analysis of the type, size and number of organizational groups and the
managerial techniques used, such as chief programmer teams, can demonstrate
the individual project's approach to the communication problem. In this
manner, it may be possible to derive meaningful information that directly
influences productivity and performance without the necessity of attempting
'to quantify human factor abstractions.

Productivity has in the past and continues to be measured by the number of
work units produced per unit of time or unit of resource. A work unit

may be a line of code, page of documentation, record of data, punched card,
or any combination of these and other units. The general measure of produc-
tivity is expressed in lines of code. However, even this unit is ambiguous
since the notation of a line of code does not indicate the language
constraints inherent in the line of code notation. It is well recognized
that a line of source code is less expensive to produce than a line of object
code, without even considering the other software attributes of size,
complexity, type of application, etc. Further, the amount of analysis
contained in the design phase of software development may be the single most
important activity and may contribute more to reliability, portability, main-
tainability and other abstract qualities than any other activity. The level
and extent of the design analysis is conspicuously missing from productivity
measurements. Therefore, the current productivity measurement conventions
are felt to be somewhat deficient in their attention to extremely important
and essential work contained in the development process due to the difficulty
in quantification of abstract processess of this nature.

Perhaps reducing the productivity rate to number of source code statements
per manyear of effort is not only administratively expeditious for arriving
at cost figures, but also provides a fast and simple method for comparative

45

evaluations between software systems and/or system developmént companies.
However, in order to support productivity analyses that may indeed provide
useful insights into increasing productivity and performance, more data are
required than total size of the delivered software, number of man-months
required to produce it, and total resources spent during production.

One of the current trends in the analyses of project productivity involves
using the traditional measuring algorithm while altering

the methodologies employed by project personnel. In this manner, the need

to collect large volumes of human factors, as well as production data, is
circumvented as long as a log of the programming techniques employed by
project personnel is adequately maintained. Unfortunately, this epproach does
3 not consider some important and well documented psychological effects inherent
in a sample test group. If all other factors can be duplicated, including
personnel, software, working environment, customer interactions and direction,
etc., other factors such as the Hawthorne and Heisenberg effects must be
accounted for in the final productivity measurements.

The conclusion that this study makes is that the field of productivity
analyses is an extremely large area for study. An historical data base
containing large volumes of data representing many aspects of software

{ develcpment appears to be essential to productivity studies. For example,
personnel skill levels, training, and educational backgrounds forma set of
conditions that obviously impacts performance. Although this particular area
of study appears to be of little immediate interest to RADC, it is thought to
have significant impact on performance by human factors scientists. In 1975,
it was estimated that university trained information systems personnel
comprised 35 percent of the analyst/programmer/manager work farce, although
surveys indicate that in state data processing agencies, the percentage of
people receiving formal technical training is somewhat higher. Further, it
was found that not only is the amount of training important, but so is the
adequacy of that training, including such factors as instructors' qualifica-
tions, subject material, currency of programming technology, and technical
standards. These areas cf productivity analyses have been examined in the

; past without impacting the total software industry. Perhaps the lack of a

46

O et st i e el wey iandedi il

single, significant contribution to productivity in this field has had the
effect of minimizing the emphasis of attention now being committed to the

study of educational background, training, listing, etc.

However, it is the

conclusion of this study that these and other human factors data should be
included in the repository. Again, the purpose of this study has been to
determine data requirements necessary to support productivity studies.

The exact productivity studies to.ibe conducted at RADC have

not been delineated and it has not been within the scope of this study to

define such.

Although the current areas of interest have been considered

in determining data requirements, it is felt that a broader. longer range
objective must necessarily be inherent in the formation of an historical data
base. For these reasons, this study concludes that the data requirements
necessary to analyze productivity include data from the following areas:

Environmental Attributes - Those factors unique to the individual

project that are mainly concerned with the people element,
including the customer interactions and requirements, the man-
machine interfaces, the organizational structuring of project
personnel, the qualifications of project members, and the
attributes of the software problem itself which impact indivi-
duals, such as complexity and size.

Project Performance Data - Those real and measurable data
reflecting the amount of work performed and the amount of
resources allocated and expended, as constrained by time and
deliverables.

Product Quality Characteristics - Those data reflecting actual
product behavior and structure as demonstrated by the use of
specific project tools and aids.

In conclusion, collection of data supporting all productivity analyses can
not possibly be attempted. Instead, this study recommends a data

collection scheme that can be expanded to meet evolving RADC needs, while
providing data sufficient to determine productivity measures while analyzing

project and product dependent variables that may have impacted the productivity

measures.

47

It is clear that project performance data must be collected in order to
evaluate the amount of work accomplished - information that is basic to
productivity analyses. This study recommends that a standardized method for
obtaining progress information on all products for which work was performed
during the reporting cycle be initiated. By using a reporting technique
applicable to the definition and collection of all work data, productivity
measurements may be obtained that are not necessarily tied to any one
productivity notation, i.e., lines of code, pages of documentation. At a
minimum, a reporting system wherein the software products are defined, work
progress made during the reporting period for each product is submitted, and
all resources allocated and expended are accounted for, will provide
productivity measurements. The results of this information coupled with
project environment data, such as project progress and summary reports,
computer utilization data, project manpower summaries, etc., should meet the
basic requirements of productivity studies. Further, the collection of the
product's structual and operational characteristics may also contribute to
productivity analyses by providing insights into significant product factors
that impact the production process.

4.2 RELIABILITY ANALYSES

Software reliability has been under scrutiny since the first development of
related programs. Unfortunately, the problems existing then still exist
today and perhaps the industry is not much closer to producing error-free
programs than it was decades ago. This study has examined past and present
attempts to improve software reliability, resulting in the following
conclusion.

No one set of data parameters collected for research purposes will signifi-
cantly support a wide range of reliability analyses. Because of the diversity
of studies of this nature and the specialized parameters needed, a data
collection effort geared to the acquisition of software development data
sufficient to form an historical data base with the intention of supporting
current and future recearch needs in the general field of reliability is a
prohibitively large and costly task. Consequently, this study recommends the

48

collection of specific sets of reliability-related data sufficient to support
existing and current research needs, while developing tools and techniques

4 that can be integrated into a flexible and expandable data collection

system leading to the support of future research requirements for reliability
studies as they become apparent.

i The field of reliability analyses includes studies covering every aspect of
: software development from the requirements specifications to design method-
7 ologies and languages to testing principles and development of test tools to
k measuring software failure rates for reliability predictions. The amount of

data generated by and for any one of these investigations may negate the
possibility of concurrently collecting data for any other study. Therefore,
_ although it is apparent that detailed error data and failure rates are

5 necessary data to collect for current RADC requirements, their utility may

' be short term and applicable to a limited field of research. While storage
of this type of data may consist of both data files for machine storage and
hard copy library storage, methods for systematically accessing large volumes
of detailed data are necessary if the data is to be useful, either presently
or in the future.

Some of the current RADC work in reliability consists of modeling and software
error analysis. Reliability modeling is directed at predicting a measure of
software reliability by accumulating operational data of a given software
system, the number and type of errors detected, and subsequently, producing

a function which predicts failure rates. There are numerous methods currently
being used in reliability modeling, most of them requiring similar input

data. The basic problem of this type of reliability analysis may be exactly
that fact. A statistical analysis of similar software development data
obtained from entirely dissimilar software projects, including application,
complexity, operating systems, computers, methodologies, personnel, etc.,

is being used to mathematically predict the reliability of that software.

Further, the data and measurements needed for the different modeling H
techniques are not exactly the same, resulting in the necessity of a myriad
of ¢ollection schemes; the modeling predictions have little or no

49

H

i i oy w——

applicability to large development projects in an evolutionary state, and
the problem of introducing new errors in software systems while correcting
previous failures is not within the scope of current modeling technology.
Consequently, a large data collection effort geared to support a small
interest group of this nature is not recommended.

Research work on the nature and density of software errors, on the other
hand, appears to be a meaningful endeavor that may afféct all phases of the
software development 1ife cycle. Coliection of error data must be initiated
with continual evaluation given to the operational methods employed in the
collection scheme, categorization of error data, and uses to which the data
are put. Collection of error data implies large volumes of detailed data

at high costs, a process which must be methodically and carefully examined.

In summary, this study recommends collection of three types of data to support
current. research requirements in software reliability, including:

e Environmental Attributes - Those factors unique to the individual
software project that impact the software product, both directly
and indirectly. These factors include size and complexity of
the software application; familiarity of project personnel with
the specific application and development environment; tools,
techniques and concepts employed during the development process;
and the time period allocated to each phase, as well as total
elapsed time, given to perform the job.

e Project Performance Data - Those factors reflecting the actual
amount of work performed in a measurable time period; the
management provisions, both planned and actual, taken to monitor
work progress and product quality as demonstrated by milestones,
reviews, deliveries and/or other formal or informal examinations;
and the reporting vehicles by which management monitors the
discrepancies, errors, changes and other related data made to
the developing product during the testing period.

50

oy

® Product Quality Characteristics - Those factors revealing
product structure and operational behavior that may directly
impact the reliability of the product.

4.3 SOFTWARE DEVELOPMENT COST STUDIES

In addition to the examination of data requirements for productivity and
reliability studies, attention was also focused on the factors contributing
to the ever-increasing costs of software development. It is generally

agreed that one of the greatest services that a data repository could provide
would be a data base of detailed and reliable cost data from which the
salient cost factors for software development could be isolated.

Complicating the process of cost analyses is the lack of uniformity and
visibility of the methodology used to define, plan and distribute the total
work package as it relates to available resources and deliverable products.
In this regard, collection of software costs data reported against a uniform
work breakdown structure defining work tasks and associated products should
initiate a standardized approach for collection of costs data and the
evaluation of cost estimating t~chniques.

In the area of costs, the evidence seems to indicate that it is the gross
inaccuracies in the original estimation of costs rather than inefficiencies
in controlling costs that create the aura of financial irresponsibility
surrounding software development. The process of estimating the different
components of a given software job, deriving the proper weight or relative
importance of a task for the particular project, estimating the resources
required to perform the tasks, and achieving an optimal allocation of
available resources is complex and difficult. For instance, the relative
proportionate cost of analysis, programming and test shift dramatically with
system size. That is, the programming cost for a small system comprise 60%
of the total costs as compared to 15% of a large system. In a like manner,
testing costs for a small system are about 15% compared to 45% for the large;
design and analysis costs are 15% for the small, 40% for the large. Those
tasks requiring a great deal of coordination, communication and interaction
grow much faster with system complexity than those that can be performed

51

relatively independently. In actual practice, since analysis, design and
testing are 12ss well defined than programming and more likely to be performed
inadequately, the true cost ratios may be even more disparate. For accurate
estimates, the software development project must be broken into much smaller
components than those three project phases, and much more accurate costing
formulae applied since the ones available yield such poor results. Data must i
be obtained at many strategic points in time and location in the development
cycle to permit proper evaluation of the contributing factors.

Not only is there a current lack of understanding of the components of

software development and of refinement in the estimating process, but the

data that are collected appear badly contaminated through subjective estimates
and/or inclusion of the costs of irrelevant or seim-irrelevant tasks, such as
training and administrative duties. To derive valid estimates, cost data
must be systematically collected in a reporting period of short enough
duration and a task breakdown small enough to avoid the perturbations of
subjective estimates and lack of detailed precision. This situation is further
complicated by the sensitivity accorded cost data by project managers (see
Volume 005 of these reports). It appears that managers are more willing to
report manpower and machine utilization than dollar costs. As resources,

both of these are much more complex and less defined than dollar costs. That
is, personnel classifications are far from standard in the industry, a
condition that professional and governmental agencies are seeking to remedy.
Obviously, a thorough description of the machines is required for proper
evaluation of machine-time expenditures. In designing a data collection
system, it is recommended that considerable flexibility be provided in the
data collection forms to describe the tasks, products, and resources involved
in cost data collection. At some later date, perhaps more standard personnel
classifications and task descriptions may be established, but at the present
time it is deemed infeasible to force a standardization scheme of this nature.

In many ways, cost analyses are a counterpart of productivity analyses and
the factors that are involved in one are involved in the other. Hence, for
understanding of the cost factors, much environmental data needs to be
collected and analyzed just as for productivity.

52

1 In summary, in addition to the project's performance data collected to

“ support productivity and reliability studies, cost data relating to the

project's work breakdown structure, although sensitive to public scrutiny,

may be collected with some additional effort. These data will form an

historical data base sufficient to analyze the allocation and expenditure

of resources by the project, as well as providing data for related studies

‘ in the definition and ¢1location of the work package and the resource

; estimation process. The data defining project environment and product

; 2 quality together form a data base from which comparative cost studies may be
realized.

S DATA COLLECTION AUTOMATION REQUIREMENTS

The nature of the interactions of the data collection system with the central
software data repository will be influenced by the type of data structure
used, the data management functions supported, the configuration of data
entry and data storage devices employed, and the manner in which the data
collection and repository system is managed. The detailed investigation of
these concerns is reported in Volume/004. A short summary of this report
follows.

g1 DATA STRUCTURES

In determining the relative advantage and disadvantages of various data base
organizations, this study evaluated the degree of centralization/decentrali-
zation of the data base, the physical and logical structures available, and
the access methods that might be employed. Evaluation criteria included the
relative costs of storage, flexibility in meeting users' needs and changing
conditions, security, and ease of implementation and use.

5.1.1 Degree of Centralization

The issue of whether the data base should be located in a single, centralized
repository or distributed among several regional or local data bases depends
upon the utilization of the data base. The data base may be used for long
range research only, for short term study of specific issues, and/or for pro-
ject management.

(Since short term studies of specific issues are not the principal objective
for which the repository is to function, a discussion of the advantages and
disadvantages of centralization to this type of study will be omitted. How-
ever, it appears that there will exist the need to collect additional and/or
differing sets of data for such studies, requiring the data collection system
and repository to take this into consideration in its formation. It is
exactly this requirement that has lead to the data classification scheme pro-
posed by this study, which will be discussed in Section 6.4.) i

If only basic, long term research is supported by the repository, a

54 3

completely centralized data base offers many advantages. A central-

ized data base is easier and cheaper to implement and operate than a decen-
tralized system, but poses some secondary problems for the data collection
system. A centralized system may be most adaptable to non-standard data
collection practices at local projects, but only at the expense of extensive
data editing at the centralized source.

The most serious problems and disadvantages of a centralized data base opera-
tion are those concerned with the sheer volume of input, such as processing
the large number of input errors that may be expected, especially until user
familiarity is established. Further, data suppliers will probably receive
little benefit from a centralizod repository and may resist supplying data.
Even a small software system may expect to submit a large volume of data.

For a moderately large system, the load and cost of key entry and data
analysis may be expected to be quite large; and if erroneous and missing data
are returned to suppliers for correction, the edit cycle will be long and
unreliable. Past experience indicates that data repositories based on long--
range research applications have been unsuccessful with such problems as not
being able to process the input load from diverse projects, little immediate
return to justify the costs of the data base, and a low level of acceptance
and use. (See Volume/002 for a more detailed discussion.)

These problems are somewhat ameliorated by standard reporting requirements,
limiting automatic data collection to source code analysis and summarized run
data, restricting the number of items collected, and holding to a reporting
cycle not wore frequent than monthly. Source data automation - keying and
editing the data at the source of acquisition - and accepting summarized and
machine-readible input also reduce the impacts of high data entry and analysis
at the centralized sites.

If direct management support to either program management offices or to
individual projects is to be provided, a distributed or local data base has
numerious advantages, including:

1) Automatic collection points can be built into the supplied
software.

55

2) Fine, detailed data may be kept at the project or regional
site and only filtered, summarized data need be sent to
the central data base.

3) Direct benefits are provided to data suppliers in the form
of management support.

4) Data entry may be done interactively at the project site,
permitting immediate feedback and correction of errors.
Even if data entry is not done interactively, a shortened
error correction cycle is realized. - |

5) Project management may feel that their data base is more
secure if it resides at the project site. {

The chief disadvantages of a decentralized system are the problems and costs 5
of providing standard software to a variety of project computers and/or of
providing standard hardware to many projects. Maintaining standard software
and a standard data base for potentially conflicting needs of many locations
is invariably a problem for multisite systems. Certainly, creating many ver-
sions of the software will require an extended time period and is not a
feasible solution for an initial capability. Gradual adoption of a standard
project monitor or distributed data base system is feasible on a long term
basis, but places the recognizable requirements of portability, maintainabil-
ity and adaptability on the central system.

The problem of accessing distributed data bases on a variety of local com-
puters must be recognized. Direct access from the central location is possi-
ble, but involves considerable transmission costs and user resistance may
arise if the privacy of project-sensitive data is threatened. If central
access is not used, an extract program can be run to sample, filter or
summarize the data before transmission to the central computer, either
directly or via a machine-readible or hard copy media. This gives the local
project manager greater control of his data, but reduces the responsiveness
of the system for research purposes.

Regional or command centered data bases on a specialized basis - i.e., as

56

for a Reliability Center, Productivity Center, or Maintainability Center -
patterned after the specialized research facilities served by the ARPA were
also examined. It appears that probable research activity seems insufficient
to support such specialization. :

5.1.2 Data Base Structure

There are many issues in data base design that are still being addressed
rigorously by data base theorists. At issue are the physical organization
of the data base, the method of access and the logical structure of the data
base apparent to the user. Query languages are based on logical views of the
data structure, and a data management system maps the logical structure onto
the physical structure for retrieval. The data access method exists at the
interface between the logical and physical views of the data and largeiy
determines the nature of the mapping that is done.

5.1.2.1 Physical Structure

The advantages of serial, linked list, direct and inverted files were investi-
gated. Serial organization has advantages in relative independence and ease
of implementation. It uses space efficiently, grows readily and accommodates
several access methods. It has disadvantages in flexibility of record length
and order, and maintenance is expensive if many changes and reorderings must
occur.

Linked 1ists have the advantage of keeping records in a file in order without
sorting or moving about, but are space consuming and have slow access times.
Although complex networks of relationships can be expressed to yield a power-
ful query capability, this freezes a logical view of the data base into the
physical structure. System malfunctions are difficult to recover from and
the maintenance costs of reforming complex relationships may be high.

Direct, hash-addressed files have advantages in the speed of retrieval, but
sorting or retrieving on secondary keys may destroy much of this advantage.
There are almost always some overflow problems, e.g., more than one key hashed
to a single address bucket, and space utilization greater than 80% is
undesirable because of this.

57

e

Fully inverted files are very fast and powerful in answering very complex
queries, but are expensive to maintain. Alteration of item attributes and
deletion of fields have far reaching impacts on the data base. Hence, for a
long-life, relatively high maintenance rate system without a very demanding
retrieval level, as the repository may be expected to be, fully inverted
files are not a good choice.

In summary, it appears that a serial data structure with current records in
direct access storage and historical records on tape will be the most
economic and satisfactory system.

5.1.2.2 Access Methods

An access method mediates between the logical view of the system and the
physical structure. To a degree, the physical structure of a system helps
determine the access method, but some access methods may be used for more
than one structure, (see Figure 5). A data management system may support
files of diverse structures and several access methods. An evaluation of the

L D
®. -
% S 2\ %
% Q.. P ®,
% 2 5’ +
> % % %
R % %; i
Serial X X
s) ;
53 Linked List p X P
N .
E Direct p X P
E; Fully Inverted X
X = generally used
P = possible in some cases

Figure 5. Access Method Matrix

58

A

sequential, chained, algorithmic and indexed access methods was made in terms
of the needs of the repository and the interactions with the data collection
system. '

The sequential access method depends upon the physical structure of the data
base being serially arranged in some way, but partitioning the data base
permits random access to subsets of the file. Sequential access may be the
only access to a storage device (e.g., tape) and it is efficient when the
access rate per pass is high. It has disadvantages in reduced security and
report sorting requirements where the order of presentation differs and is
more complex than the physical structure.

Chained access applies to linked 1ist structures and is very effective where
the information satisfying a query is known in advance so that the linking is
established to answer the query. Where the physical structure does not re-
flect the logical query, access may be slow. A query causing retrieval to
skip around in the data file is also expensive. In short, linked lists and
chained access are only efficient when the nature of queries against the data
base can be anticipated and built into the data structure. This is not
likely to be the case for the repository, but might readily be the case for a
standardized project monitor satisfying standard report requirements.

Algorithmic access is used with direct file organization to reconstruct hashed
keys. Algorithmic access is useful for fast access to large files with re-
cords being retrieved by a prime key. Security provisions are high. Access
using multiple and secondary keys is quite slow, a factor that makes it
rather unsuitable for the repository.

Indexing is the access method used by most data management systems and may be
applied to each of the physical storage structures. It has definite advan-
tages in ease of data base maintenance and multiple keys may be used for
retrieval, but there is a cost associated with the creation and maintenance
of index files or catalogs. Since an index is a file like any other, any of
the basic physical organizations may be used for index file structures. Real
advantage may accrue from searching and sorting relatively small index files

59

T A

rather than massive data records. Also, additional searching methods are
possible that result in improved efficiency over other methods.

In view of the flexibility and power of indexed access, this method appears
most appropriate to the repository despite the cost of index computation and

maintenance.

5.1.2.3 Logical Structures

A logical structure of a data base is the view that a user has of the data
and may have only an incidental relationship to the physical structure. The
logical definition of the data base may vary from user to user; a particular
user's view is called a subschema and may encompass only part of the data.
The classes of logical views investigated by the study include the network,
the hierarchical and the relational logical structures.

A network view of the data base is very powerful for defining data that are
interrelated in multiple ways and is usually associated with linked 1ists and
chained access. Unless separated from the high cost of maintenance of linked
lists, the network view is not appropriate for a data base with a high volume
of update activity or unknown queries.

A hierarchical view of a adata base is typified as a tree structure and is
often associated with multi-level indexed access methods. Multiple views of
the data base may exist. The different access methods may all be addressed
by a hierarchical view. Although most implementations of hierarchical views
preserve some reflection in the physical structure of the data base, great
independence can exist. For ease of use and data base maintenance, the
hierarchical view provides adequate flexibility without too great a cost.

The relational view of a data base is that of a table or an array. Unlike
network and hierarchical views, which usually retain some connection to the
physical structure of the data base, the relational view is a logical view
only. While the complete independence of the logical and physical structures
permits great flexibility in maintaining and modifying either structure,

60

Miaiie ol

Lo i

there may be considerable costs in mapping one onto the other through the
access method. Hence, wiiile the relational view is a good choice for the
repository, its feasibility depends upon discovering an efficient implementa-
tion scheme.

Since the data base structure must support growth and change, multiple keys,
and unknown queries, it would appear that hierarchical views of the data base
structure offer the most flexible structure realizable within a reasonable
effort.

5.2 DATA MANAGEMENT FUNCTIONS

The data management functions investigated include data definition languages,
data base creation and maintenance, information retrieval, ensuring the
integrity of the data base in case of system failure, security, accounting
for usage, restructuring the data base, managing core, generating reports,
and performing administrative maintenance tasks. The additional considera-
tions of scheduling and conversational dialogues were addressed for inter-
active systems. Criteria of efficiency, ease of use, ease of implementation,
and ease of modification were considered in evaluations.

5.2.1 Data Definition Language

The alternatives for data definition languages range from the minimal declara-
tion of coding type and item length to editing rules, access authorization,
and usage rules. The data management system may use the definitions to bind
data at either compile or execution time. Data definitions may permit

aliases and alternative definitions for the same items or sets of items.
Coding types and data structures may be limited to a few standard classes or
be extended to a large variety of classes. Extensible data definitions are
special features of some advanced programming language.

While advanced features in a data definition linguage are desirable, their
implementation takes time and increases the complexity of the languages in
use. None of the parameters defined for the repository are at all unusual
and the data description requirements are straightforward. It is desirable

61

to permit multiple logical views to enable users to incorporate definitions
to their particular interests, but this feature is not essential for an
initial capability. Compiler-bound variables are adequate for current data,
but execution-bound variables are desirable for historical data whose
definitions may change with time.

~

5.2.2 Data Base Generation and Maintenance

The data base maintenance alternatives investigated include fixed data defini-
tions versus directory - sensitive routines, batch versus transaction orienta-
tion, levels of editing and degree of accounting. Interactive data base
maintenance always raises a few problems in contention, and complexity.

Since it is anticipated that the input level will exceed the retrieval load
and that there will not be a high demand for instant currency, a deferred batch
operation is probably preferable to the immediate input of transactions, thus
avoiding some contention problems. Symbolic editing is desirable. If multi-
ple logical views are permitted, there is a need for mapping between the
logical and physical structures.

5.2.3 Data Base Query and Information Retrieval

A very wide range of retrieval capabilities are available in various systems
ranging from set, programmed reports to powerful query languages. Since the
research questions that may be asked of the repository are not known to this
study, it is assumed that a flexible query language will be needed for the
data management system.

5.2.4 Data Base Integrity

Restart and recovery in case of hardware failures and program halts may or
may not present a problem, depending upon the degree of integrity demanded

of the system. In an interactive system, most operations tend to be small,
consisting of a single or a few transactions, so that resubmitting the total
job is not a great penalty when a fault occurs. In a batch update, however,
not only is considerable time lost, but an abort may leave many faulty records
in storage. In a statistical data base, absolute accuracy may not be required

62

- i.e., a few missing or inaccurate records may not make a noticable differ-
ence in results - but accuracy is psychologically appealing. It is common

in long update runs to save periodic dumps as restart points to minimize

‘ rerun times. Also, duplicate copies of a data base on tape are kept to reload
[the database in case of a irretrievable abort during an update. Selective
dumping of changed records is more efficient than a total data base dump if
activity rates are not high for all records.

In addition to providing recovery checkpoints, some means of verifying the
accuracy of the modified data is necessary. Some checks can be made automati-
cally, such as record counts and chain verification, but often visual checks,
benchmark tests, and data samples are necessary to insure that the system is
operating correctly.

Restart provisions can be expensive, but it appears that only moderate re-
covery capability seems required of the repository data management system.
There will be little need to update existing records; most of the data will
be new records, additional software to insure proper storage, proper linkage
and selective dumping of updated records seems desirable.

5.2.5 Security

Although data privacy and computer security are subjects undergoing close
scrutiny and moderate development, elementary security measures appear :
adequate, given that the data is desensitized before inclusion in the reposi-
tory. The data management system should require that security keys be pro-
vided before data base access is allowed. Further, users of the data base
should not be permitted access to data items outside their logical views of
the data base. If direct access is limited to analysts associated with the
repository facility, the analysts may screen requests for sensitive material.

Security on a local level where desensitization would impair the usefulness
of the data presents a different problem. Observance of security keys and
procedures should be more stringent. Access to local data bases is a subject
that will have to be solved by future negotiation. Although project managers
are generally quite willing to share data (See Volume/005), some information

63

L

L% A

is considered sensitive to the point where direct access to the local data 1
base may be refused. i

5.2.6 Accounting

Detailed accounting for computer reSource utilization is normally needed in
any shared facility to distribute costs fairly. It is also desirable as a
means of evaluating system efficiency and bottlenecks. In the case of the
repository, in a wholly owned facility, data collection and data base update
activities are facility specific costs. Providing other services to research
projects and other users may be justifiable charges to those projects via a
preestablished cost algorithm. Unnecessary and excessive usage should be
discouraged to avoid overloads. Even if RADC shares operational costs, a
fee should be employed to avoia abuse.

:
d

5.2.7 Data Base Restructuring

Restructuring serves two purposes for a data base. First, it cleans up "gar-
bage" and puts the data base in an efficiently usable condition, and secondly,
it allows reorganization to accommodate changes. Independence of logical
views and physical structure permits one to be changed without affecting the
other. The repository system will not be static and a reasonable amount of
logical and physical independence should be achieved. Some amount of restruc-
turing might be necessary, but the extent will depend upon operational experi-
ence and the cost of restructuring.

5.2.8 Core Management

Core management can be done either by the data management system or by the
operating system. Most existing data management systems manage their own
allocation of core, but some are bound to operating systems. New virtual
storage management techniques bring in special hardware features, altering
core management requirements. The techniques of memory management chosen
for the repository will depend upon the capabilities available in the
operating system and the hardware configuration under which the data manage-
ment system must operate.

64

5.2.9 Reporting

Reporting system status (as apposed to user report generation) is an essential
support service for the data management system to perform. Its exact nature
depends upon the data structure chosen so that load factors and system quality
are accurately reflected. It is necessary to keep activity ratios for use as
a basis for relegating records to history files or for purging, requiring a
data base monitor, but several basic system design decisions are required
before these types of requirements can be explored adequately.

5.2.10 Scheduling

Scheduling is not a serious problem until multi-user interactive systems
operations are entered. The chief problem is the avoidance of deadlock. If
a wholly batch system is used, scheduling problems will be minimized; if an
interactive system is chosen, operations to control the shared use of the
data will be necessary.

5.2.11 Coaching

In interactive systems only, an extensive dialogue may be carried on between
the user and the data management system; first, to prompt the user in provid-
ing inputs, and second, in requesting clarification and immediate error
corrections. In addition, instructional material may be included in the
system to teach or help the user in system operations.

Constructing an efficient, effective, thorough dialogue is a highly technical
task and capable of almost limitless expansion. At least, minimum prompting
and error message interaction must be provided if an interactive system is
chosen.

5.2.12 Data Management System Capabilities

It is recommended that a data management system be developed whose physical
data base structure is transparent to the user; i.e., whose structure is
viewed at a logical level only. The system should:

® Provide a data definition language capable of defining

65

multiple logical views of the data base by building a
table to be used by access routines to map the logical
views to the physical view.

o Provide sufficient independence of the logical from the
physical view so that new. data items and record relation-
ships can be added without affecting the existing logical
views.

e Include security keys that must be supplied before data
base access is allowed.

o Prevent access to data items outside the logical view
of the user.

e Defer batch updates to periods of minimal activity to
avoid problems of deadlock and restart.

e Base costs on research access or project management
access but not on data entry.

5.3 SYSTEM HARDWARE CONFIGURATION

Three classes of system hardware were reviewed: data storage, data entry and
data processors. Again, the basic criteria used in the investigation were
flexibility, security, cost and growth potential.

5.3.1 Data Base Storage Media

The media that offer adequate storage for a large data base are serial access
devices, direct access devices, and mass storage devices.

The cost of storage on tape (serial access devices) is low; it can be physi-
cally protected by locking; and it can grow indefinitely; however, it is slow
and inflexible. It is an excellent back-up medium for historical files and/or
other files with a low activity rate.

Direct access devices, which consist of a wide variety of disks, drums, and
data cells, vary greatly in cost depending upon the speed, channels, and

66

b b ks A B Al s

capacity of the device. Non-removable, fixed head devices offer very fast
access, but disk packs offer opportunity for physical security and unlimited
storage (at the expense of mounting and dismounting packs). For huge volumes
of infrequently accessed data, direct access devices are relatively expensive
as compared to tape and mass storage devices, but are economical for fre-
quently accessed data. Disks are relatively flexible and data may be re-
arranged quite easily.

Mass storage devices have huge storage capacity and some direct access capa-
bility. Costs are lower for mass storage than for direct access storage and
speeds can be quite fast using parallelism and look-ahead buffering. It is
flexible, expandible and capable of containing both high access and histori-
cal data files. The tapes and cassettes used for block storage are removable
and some may be locked out. Unfortunately, mass storage devices are largely
untested and those currently available seem to be insufficiently reliable to
support a data base operation with adequate efficiency and dependability.

It is recommended, then, that direct access storage be used for current and
highly active files and that serial access storage (tape) be used for back-up,

historical and/or low activity rate files.

5.3.2 Data Entry Methods

There is several data entry devices and methods available, even omitting
special data capture devices such as recording time clocks and plastic card
readers. Key to card, tape and disk devices range from simple card punches
to complex intelligent terminals.

Evaluating candidates for a data entry system involves such a great number of
options and alternatives that the task appears insurmountable without a great
deal of effort. The options chosen are strongly influenced by the relative
centralization of the data base and whether the data acquisition mode is auto-
matic or manual. In making a final evaluation of data entry methods, three
candidate configurations were formed, including a relatively small, completely
centralized system with a limited data management system; a medium sized
system with a more powerful, interactive data management system, with a

67

potential capability for supporting distributed data base; and a large scale,
high traffic system. This study evaluated the impact of data input load as
it relates to efficiént and effective error correction, and the data entry
system as it relates to effective servicing of repository users.

For the small research-only system (as the initial pilot facility at RADC
might be), it is economically feasible to acquire all data on either manual
input forms or hardcopy reports, transmit the data by mail, preprocess it
manually by data analysts to detect and correct errors, prepare the data for
input, and key it for entry. Card or cassette buffering is adequate. Some
profit might be expected from a terminal with some intelligence to aid error
detection, but it is not required.

For the medium-sized system, the 1nput load may stress the completely centra-
lized facility's capabilities and alternative input modes need to be inspected.
Keypunch is outmoded, being relatively slow in preparation and involving
several processing steps. Key-to-tape and key-to-disk without input editing
capability are of medium cost, but have rather inadequate editing and error
detection capabilities. Optical character readers provide an acceptable
volume of input, but many readers require special type elements, most are un-
reliable and “cranky" in operation and an inordinate amount of time is
entailed in error diagnosis and coriection.

The most reassurable resolution of the data eitry load problem at the complete-
1y centralized facility is to submit the bu'k of the data on some machine-
readible medium. Ruling out cards as too tilky and OCR as too unreliable,
leaves tape (either punched or magnetic), magnetic cards, and direct trans-
mission. Key-to-store over telecommunication lines for any substantial dis-
tance consumes much transmission time, both for initial input and to correct
transmission and keying errors, and is relatively expensive. However, key-
to-store at regional or local data bases i¢ a reasonable expense if the
urgency of management control datais added <o research requirements. Key-to-
tape or local data base-to-tape, either re« or cassette, is an entirely
satisfactory medium (except for the turn around time on error correction, a

68

NP B

consideration true for all manually transported media). Records may be in
either card or report format, with or without blocked records, depending
upon the power of the local tane operation. Direct transmission from a local
data base or temporary store is possible, if currency of data is a factor.
Otherwise, the protocols involved in interfacing with many computer mediated
] data sources may require extensive programming. (It must also be noted that
maintaining compatibility of tapes produced by many devices, especially
cassettes, is not a trivial task.)

Data entry at the point of acquisition has other advantages, such as the
speed and ease 9of correction of keying and data errors. Editing of inputs

i does require some intelligence, either in the form of an intelligent terminal
or an input editor in a local computer. Even with a project monitor system
mediating input to the repository, there is some argument for an intelligent
; terminal with a CRT display. Editing is greatly facilitated and immediate

i entry encouraged.

—

o

While manual input modes are still feasible for a medium sized facility, dis-
persion of the key entry load to local facilities and the utilization of
machine-readable inputs may reduce both the data congestion and error correc-
tion problems.

For a large system, some means of semi-automatic data capture (e.g., intelli-
gent terminals and project monitors), some preliminary reduction of data,

and machine-readable, if not automatically transmitted data, are desirable.
Although the software data collection system could grow this large, the final
facility would be several years in fruition. It implies a sophisticated
data management and information retrieval system, huge amounts of storage,
perhaps some distribution of the data base, and considerable development
work on project monitor programs and data editors for intelligent terminals.
Without some degree of automation, a rea}ly large facility is not deemed
highly practical.

e

oy R e S R NI A N

It is recommended that the data repository move to attain machine-readable
input at the central repository, considering the following factors:

69

e Data entry should be at or near the point of acquisition.

e Data entering the data base should be as "pure" and purged
of error as is possible.

e The data entry system must be flexible in adapting to input
changes in individual item values, additional inputs, and
forms variation.

e Data entry should match the highly structured, modularized,
and interrelated data collection forms with corresponding
alternative and replaceable software modules.

To meet these goals, it is further recommended that the preferable data entry
device is an intelligent terminal with moderately powerful editing logic,
storage capacity and CRT display capability. An intelligent terminal has the
following advantages:

® A superior editing capability.

e Interactive input and error prompting.

e Storage and review prior to final entry.

o Flexibility in adapting to changes.

e Entry routines easily reflect modularized and structured
input forms.

e Machine-readable and edited output wherever the entry
device is located.

It is also recommended that further investigation be initiated to determine
design and user requirements for an interactive editor for the intelligent
terminal based on the data requirements defined herein, as modified by
changing repository requirements.

5.3.3 Processors

Only a cursory inspection of central processing units was made. Many pro-
cessors are available that are equal to the tasks suggested. However, it
was understood that the host computer for the pilot facility would be the

70

Honeywell 6180 computer. This computer is quite adequate to handle either a
small or medium system even on a shared basis. v !

bt

TN e G T A N

6. SOFTWARE DATA COLLECTION SYSTEM SPECIFICATIONS

The Data Collection Study has derived requirements for the RADC Software
Data Repository, considering all areas of investigations made to date. It
must be noted that because there are numerous alternatives existing in the
formation process, the specifications herein presented should be viewed as
general requirements, dependent upon RADC's final selection of alternatives.

6.1 PURPOSE

These specifications summarize the recommendations derived by this project

for the creation of a software data collection and reporting system. They will
address the basic assumptions for the system, the general functional require-
ments of the system, the data types required for the study of productivity,
reliability and costs, data acquisition, transmission, data entry methods,

and the interface of the data collection system with the data management
system governing the central repository. In making these recommendations

tne general influences of cost, ensuring data integrity, and overcoming such
data collection problems as contractor reluctance to release data will be
discussed.

6.2 ASSUMPTIONS AND LIMITATIONS

The basic constraints on a software data collection system are, first, that

it meets the standards imposed by the existing military regulations, practices
and concepts; second, that it satisfies the concepts of operation imposed by
the research objectives of the RADC Software Data Repository; third, that it
addresses, if not adequately solves, problems of data integrity, contractor
reluctance and high costs of data collection.

Any long-range data collection effort for software methodological research
must be integrated with data collection requirements for project monitoring
and management. Military standard practices assume a reasonably standard
model of the software development process and define standard products and
standard quality assurance procedures. They also specify a way of organizing
work packages (a Work Breakdown Structure) and schedule and resource utili-
zation accounting. Finally, standards for configuration management

72

(configuration identification, change control, and configuration accounting)
are specified. In actual practice, there is considerable deviation in
interpretation of these project management requirements and many exceptions
are implicitly (or explicitly) granted. If research goals are to be
achieved, it would appear that more stringent standards are desirable and
should be so stated in the requirement specifications of the RADC Software
Data Repository.

The concept of operation for the repository includes, first, basic support

for software methodological research, and second, an evalutionary implemen-
tation of the data collection and data management system. Support for
methodological research involves the collection of much more information
about project environmental conditions, including the use of specific tools,
techniques and methods, than is normally required for project management.
Further, although current research interest is largely focused on the
productivity, cost effectiveness and product reliability of software projects,
the data collection system must be readily adaptable or expandable to
encompass other research goals.

The concept of evolutionary implementation implies that the repository
specifications must provide for (a) an initial capability or pilot facility
utilizing an existing computer, operating system and data management system
supporting a select set of research problems, and (b) expanding the initial
capability to handle a much broader range of projects, data types, data
volumes and research objectives than the pilot facility, providing that the
trial operation establishes the practical feasibility of the more
sophisticated and larger system.

Finally, it is assumed that at least a partial solution can be found for the
problems that plague current data collection efforts and impair the compara-
bility of data from project to project. Much of the unreliability of data
that inhibits current research efforts lies in a lack of standardization of
terminology, measurements and data collection procedures. Further, data
reliability is decreased by the bias and subjectivity inherent in current
collection procedures, in the natural resistance of projects to management

73

controls, and in the reluctance to release sensitive data - data that may
reflect on project competence or reveal proprietary technology.

It must also be recognized that efforts to collect a Targe volume of high
quality data will entail high costs. First, the benefits to be expected from
a wide representation of project specific data must be weighed against these
costs, and second, mechanisms for establishing data delivery requirements

and for reimbursing collection costs to projects must be considered in these
specifications.

The objectives of the software data collection system specifications are to:

° Recommend procedures tc acquire reliable, objective and
standard data to overcome the problems facing current data
collection efforts.

® Define the specific data parameters to be collected, the
instruments to collect them, and specify minimal data
collection points and frequencies.

o Determine data entry methods and configurations.

° Define the interface between the data collection and reporting
system and the data tase and data management system.

(] Define the possible repository's operations management
alternatives.

74

6.3 DATA ACQUISITION PROCEDURES

The data acquisition procedures represent the interface with participating
software development projects and the RADC Software Data Repository, and as
such must be adaptable to a broad range of conditions and numerous problems.
A wide variety of data parameters which may change and expand over time and
which represent a large volume of data at considerable cost over all projects ' %
must be acquired. An examination of project conditions has been presented |
in Volume 003; evolution changes in Volume 004; and data collection problems
in Volume 002 of the Data Collection Study series. Standardized procedures
need to be developed to ensure that the data collected are acquired under
comparable conditions and will provide valid data for experimental studies.

The data acquisition procedures must be adaptable to projects that:
° Vary in size from very large to quite small,
° Vary in difficulty from very complex and innovative tc
quite simple.
° Entail any portion, or combination of portions, or all of

the life-cycle phases.

° Have objectives that vary from pure research to automating
basic operations.

® Are located throughout the world.

'] Employ different computers, operation systems, languages,
and methodologies.

In order to evaluate the impacts of project attributes upon project perfor-
-ince. to account for project differences, and/or to ensure that projects
under study are comparable, it is recommended that a variety of environmental
sarameters be collected. Specific recommendations for environmental
srammters are presented in Section 6.4, Data Requirements.

Data acquisition procedures must be constructed so as to eliminate or
minimize such problems as:

° Lack of standardization of terminology, measures and
instrumentation of the software development process.

@ Subjectivity and bias in the measures taken.

° Reluctance to release information that is sensitive or
reflects negetively on project efficiency.

° Resistance to managerial controls.

The standards for collection that are developed must be enforceable.
Countermeasures for subjectivity and bias must be developed that deal not only
with the unreliability of introspective measures (e.g., subjective estimates,
ratings and recollections), but also of personal involvement, summarizing

and averaging over time periods, and differing organizationa! reporting levels
and configurational hierarchies.

It is recommended that the software development project models presented in
Section 2.1 be adopted as the standard models for the definition and design
of the data collection system. The measurements and collection procedures
described in Section 6.4 should be selectively established with contract
provisions made for their execution, including specified penalties for non-
observance of the prescribed collection conditions.

To reduce the subjectivity of the measures taken, it is recommended that
objectivity and data integrity be increased by:

° Acquiring data at the point of occurrence.
0 Introducing automated and mechanical recording methodology.

. Employing independent observers to audit performance, review
and test products, and record data.

] Providing specific standards and review criteria to guide
judgmental data.

76

Avoiding reporting techniques that interfere with ongoing
technical performance, irritate or distract technical person-
nel, or appear threatening and coercive.

Integrating data requirements with technical products and
performance as part of the technical work.

Acquiring data in small increments at short, regular intervals
to minimize interference of large data collection efforts.

Indoctrinating project personnel thoroughly with the goals,
procedures, requirements and definitions for the data gathered.

Developing objective algorithms for the summation, averaging
and filtering of data.

The above measures will also help to minimize reluctance and resistance to

releasing information. Also required as an integral part of the Data

Collection System, are procedures and handbooks for:

Project monitors to assist in software development
management procedures, integrate existing military
practices, and promote effective project monitoring
practices.

Project personnel to indoctrinate project personnel into the
objectives, specific data requirements and reporting procedures
established by RADC.

To provide the necessary flexibility to adapt to differing environmental
conditions and to changing data requirements, it is recommended that data
collection forms and procedures be designed and used in a modular manner.

To alleviate some of the impacts of change, procedures and mechanisms should
be established for the prompt and timely maintenance of the user procedures
and documentation recommended above. In so far as possible, user cooperation
should be solicited in defining and agreeing to the procedures for collection
of data for experimental purposes.

6.4 DATA REQUIREMENTS

At a minimum, software development data must be collected that will support
project productivity, program reliability and cost studies. Information is
also desired that will lead to further insight and understanding of the soft-
ware development process. Further, expansion of research goals to cover
other indices of software quality, such as program efficiency, modifiability
and maintainability, convertability and transportability, and ease of use and
understanding, must be anticipated ir the future. The data parameters collected
for the repository will be in part identical to or derivable from those
currently collected and/or observed by project management; both data for
management and data for research must be collected using the same procedures.
On the basis of the study reported in Volume 003 of these reports, it is
recommended that three classes of data parameters be col]ected.]

° Project environment data
® Project performance data
[Product quality characteristics

Project environment data consists of those project attributes that are likely
to influence project performance, including:

° Project definition and related data, specifically:
Project identifier
Title
Description
Start date
End date
Control Authority
Number of subcontractors
Total manpower
Total pages of documentation
Total number program modules
Total number subsystems
Total number operational source statements

Till data parameters are fully defined in the Compendium of Procedures and

and Parameters, Volume/007.

78

Total number support source statements
Total number operational object instructions
Total number support object instructions
Total number bytes in data base

Overall project complexity

Application software complexity
Control/operating system complexity
Support system/tools/aids complexity
Data base structure complexity

Quality of requirement specifications
Quality of design specifications
Schedule adequacy

Overall project management effectiveness
Overall project personnel qualifications
Computer resources adequacy

Customer supplied information

Timeliness of review actions

Funding adequacy

Project software type

Customer/contract definition and related data, specifically:

Contract type

Number of coordination points

Frequency of customer contact

Customer experience with data processing
Customer experience with application
Customer experience with target computer
Customer experience with contractor
Stringency of review procedures
Reasonableness of negotiations

Penalties for non-performance

Technical risk

Redirection rate

Contract and work compatibility

79

B

Ckidiine

Contract renegotiability
Customer turnover

Customer rapport

Project location

Quality of physical facility

e Subcontract identification and related data, specifically:

Subcontractor identifier

Subcontractor type

Responsibilities

Experience in data processing

Experience with subcontractor

Experience with application

Frequency of contact

Quality of subcontractor supplied information
Subcontractor rapport

® Software installation data, specifically:

Location of target computer

Installation technique

Number of personnel in installation team
Average experience of installation team
On-site training

Software adaptation

Resource requirements for installation
Installation difficulty rating
Problem(s) description

4 Project organizationail data, specifically:

Organization identifier

Organization type

Organization responsibilities
Identifiers of reporting organizations
Work identifier(s)

80

pE—

.

Initiation date

Completion date

Personnel skill level(s)

Manning number

Managerial techniques identifier(s)
Managerial turnover rate

Key personnel turnover rate

Project member turnover rate

Identifiers of higher level organizations
Identifiers of organizations on this level

Project employee information, specifically:

Employee identifier

Employee skill level

Employee job title

Organization identifier
Experience in data processing
Experience with project programming language
Experience in application area
Experience in management
Experience with target computer
Education level

Personnel's work identifier(s)

° Computer equipment and support facilities identification and
capability data, specifically:

Device identifier
Memory size

Unit of measure

Number of CPU's

Number of I/0 channels

Memory cycle time and unit of measure
Device type

Number of sequential access devices

Number of random access devices !
Major input device type

Product identifiers
Location of facility
Mode of operation
Turnaround time
Computer availability - 1
Quality of equipment and/or related services

Quality of operating system and support software

Quality of operating system and support software documentation

® Identification of project's utilization of programming
methodologies, tools and techniques and related data, including
utilization of a program production library. The specific
parameters include:
Technique identifier

Technique class(es)

Technique type

Acquisition cost

Training effort
Independence rating

PPL identifier

Mode of operation

Manpower resource allocation

Skill level

Cost of establishing PPL

PPL operation and maintenance cost
PPL computer utiliZation costs

PPL effectivity rating

[Projects programming language identification and related data,
specifically:

Source/object Tanguage identifier
Language acquisition costs
‘Language training costs
Compiler/assembler reliability

82

Quality of language documentation
Language efficiency

Language relevance to project goals
Language support tools

Project performance characteristics should measure both the productivity
and the quality of work, including:

° Work package (work breakdown structure) identification data with
scheduled performance of tasks, specifically including:

Work level

Work identifier

Work description

Identifiers of reporting work elements
Initiation date

Completion date

Terminator

Resource utilization data:
Resource identifier
Resource unit
Resource allocated
Resource expended
Resource variance
Work/product identifiers

Identifiers of higher work elements
Identifiers of work elements on this level
Product identifiers

° Product identification data and methodologies used in its
production. These data specifically include:

Product identifier

Product mod number) . ;
Product version number ; i
Product type

Reporting level
Product description

83

ERB L abion

Identifiers of product components
Work unit

Work size

Cost

Programming language identifier
Language relevance to product
Language efficiency for product
Product complexity

Product familiarity

Product stability

Programming techniques related to product data; including
Technique identifier
Relevance to product
Integration rating
Project performance, including resource expenditures, data

current to the reporting period, specifically:

Organization identifier

Production data:
Work identifier
Product identifier
Resource identifier
Resource units expended
Work units produced
Product status

Project quality assurance provisions including records of all
proposed changes to a baselined product configuration, whether
due to external forces, implementation difficulties or product

faults/errors, or informal examination. Three classes of data
are included:

e Software Problem Report (SPR) data, specifically including:

SPR identifier

SPR type

Employee identifier

Date of problem discovery
Time of day

84

Work identifier in progress
Status

Product(s) impacted by problem
Data base identifier

Test case identifier

Test tool identifier

Problem description

Date received

Employee assigned

B Software Modification Transmittal (SMT) data,
specifically, including:

SMT identifier

Date of correction

Time of day of correction
Employee identifier

SPR's resolved

Production identifier(s)

01d mod

New mod

Unit of change

Amount of change

Difficulty rating

Work identifier

Type of software termination
Work identifier in progress when error generated
Manpower resource required
CPU time

Error description

Error type

Date received

85

° Milestone event data, specifically including:

Milestone identifier
i Work identifier

1 Date of event
Milestone type
Milestone status
Milestone description

Milestone subevents; including:
Work identifier(s)
Product identifier
Product status

Product identifier(s) baselined
SPR(s) established
Authentication

Product quality measurements should consist of those characteristics of the
final product structure and operation that can be measured most adequately
using automated analysis and recording tools. The manually collected data
supporting execution of the software using automated tools and aids includes:

° Information related to software operations, test case, job and
total run time, and errors, specifically:

Job identifier

Employee identifier

Test case ideniifier
Product identifier(s)
Technique/tool identifier(s)
Description

Device identifier

Log date

Job identifier

Computer job acceptance time

86

LAkl e . - bt e o o R

3 b s i M Sl O b i

Computer operations
Completion code
CPU time

[Information related to program structure, language construct
usage, operational behavior, data structure and usage,
complexity analyses data, etc. (The exact parameter types must

be obtained from the specifications of the automatic tools used).

Examination of the data requirements recommended by this study will reveal the
relative importance of various factors in influencing productivity and product
quality, while also giving priority to current research. For this reason, the
entire set of data parameters defined in Volume 007 have been divided into
three groups, corresponding to three levels of importance. Group 1 consists
of data items that should be gathered by all projects, and is believed to be
the minimum set required for support of productivity, program reliability and
cost studies. Group 1 items should be collected from all projects for the
pilot facility. Group 2 consists of data of second priority and includes

many more environmenta1'factors'that may influence project performance, and
should be collected either selectively to support specific research projects
or as a long range investment for future research. Group 3 represents an
expansion in scope and detail of Group 1 and 2 parameters. Group 3 items
should be collected selectively to support specific research or upon the
development of a large capacity system. Each successive group of items
represents an expansion in data volume and an increased collection costs.
Since Group 3 encompasses most product quality parameters, it potentially
represents very large volumes of data and manual storage techniques should be
considered for items not involved in a specific research program.

To meet requirements for flexibility, modifiability, and expandability, the
data collection forms and procedures should form a modular, easily modified
collection system. Such forms have been defined in Volume 007, Compendium
of Procedures and Parameters.

87

G S SRSy v i S S

!
l
p

The specific compostion of the forms designed for the data collection
system include:

Project Environment Information - A form for collecting project
specific characteristics, to be completed and submitted at
project initiation and completion.

Contract/Customer Information - A form for collecting data
about project unique customer and contract conditions, to be
completed and submitted at project initiation and completion.

Software Installation Information - A form to collect data on
techniques, personnel, resources and problems of a software
installation, to be completed and submitted at project initia-
tion and completion.

Subcontractor Informaticn - A form to collect data on each
subcontractor's responsibilities and interfaces, to be completed
at project initiation and completion.

Organization Information - A form to collect data on each
organizational structure within the project, to be completed
and submitted at project initiation and completion.

Employee Information - A form to collect data ¢n the experience
levels for each project employee, to be completed at assignment
of an employee to the project.

Computer Equipment Information - A form to collect data for

each computing device used by the project for scftware develop-
ment.

Computer Support Facility - A form to collect data on the
quality and type of computer support facility used by the
project.

Program Methodology Information - A form to collect data on all
concepts, tools, and techniques used in the development of
software, to be completed and submitted at completion of the
work definition phase and at the completion of the project.

88

AD-A036 115 SYSTEM DEVELOPMENT CORP SANTA MONICA CALIF F/G 9/2
SOFTWARE DATA COLLECTION STUDY. VOLUME I. SUMMARY AND CONCLUSIO==ETC(U)
DEC 76 N E WILLMORTHs M C FINFER F30602=75=C= oaue
UNCLASSIFIED SDC=TM=5542/001/01 RADC=TR=76=329-VOL~1

EEEE
ERE

!.rEFErrrrr

oo

a 1

[z s e

e _Programming Language Information - A form to collect data
on each programming language used by project personnel, to
be completed and submitted at project initiation and completion.

: ® Program Production Library Information - A form to collect

data on the resource -expenditures and the effectivity of the
program libray, to be completed and submitted at project initia-
tion and completion.

o Work Definition Information - A form to collect data on the
work breakdown structure in an hierarchical manner, showing the
relationship of all work elements and the chain of authority
for each work element the software development project has
defined. The form is to be completed and submitted at project
initiation, work plan formation, or when the work package
allocation is changed. A Work Definition Information Form is
to be completed for each element for which resource allocation
and expenditures are made.

o Product Identification Information - A form to collect data on
each configuration item, its hierarchical structure, complexity,
and resources allocated; this form is to be completed and
submitted at completion of the work or product definition
phase and at completion of the software development project
for each product being developed.

e Project Performance Information - A form to collect data on
resource expenditures, productivity, and work and product
status. This form is to be completed and submitted at the end
of each reporting period for the work progress and resource
expenditures for that reporting period.

e Software Problem Report - A form to be used by project person-
nel when a problem is discovered in the software or other
associated product items. The SPR is submitted to the RACC
repository at the established reporting period. This form
provides information on discrepancies found in any configuration
item for both the project and the repository. (For the purposes

89

of this form, a problem is any condition that arises that
would, if approved, cause a modification to be made to a
software product, as a requirements change, a design or imple-
mentation dilemma or a program error.)

Software Modification Report - A form to be used by project
personnel upon successful modification to the configuration
item. The SMT is submitted to the RADC repository at the
established reporting period. This form provides information

on and the final disposition of software modifications foruse by
both the project and the repository.

Software Operations Log Information - A form to collect computer
operations data manually by a project librarian or data
collection clerk. This form is to be compieted daily and
submitted to the repository at the established reporting period.

Job Identification Information - A form to define the
relationships between test cases products and test runs, to
be completed and submitted upon completion of test case
definition.

Milestone Identification - A form to collect infcrmation on

the product and/or work status, criteria for successful comple-
tion of a milestone, and error reports generated as a result

of a milestone event. This form is to be completed and
submitted at completion of the work definition phase ard at
completion of the milestone event for each milestone, or equiva-
lent, in the software project.

Computer Operations Definition - A form to define for RADC the

computer operations and associated completion codes for each
copputing device used by the project. This form is to be
completed and submited by the project librarian,or equivalent,
prior to computer usage by project personnel. (This form is an
example of one of many, definition forms that RADC may need.

It is recommended that this type of information be stored as
hard copy rather than input in the data base).

90

e

An example of some of the data collection forms and procedures contained in
Volume 007 follows. These three example forms are applicable to all projects,
and contain data from Group 1 exclusively.

To provide basic understanding aqd precise guidance necessary to help
alleviate misunderstandings, subjectivity, bias and reluctance of the data
suppliers, it is recommended that the data collection forms be accompanied
by additional information that contributes to their understanding, use and
maintenance, including:

° Statements of objectives and benefits.

° Roles and responsibilities of Air Force and contractor
agencies.

° Control boards and committees and control and decision
mechanisms for initiating and operating and maintaining the
data collection system.

e For each form, precise definition and specifying procedures
for each entry on the forms keyed to the entry blanks.

° For compiexly derived entries, such as classifications of
errors and programming methodology definitions, replaceable
addendum specifying required information entries.

° For maintenance, data definition catalogs and control
procedures.

91

Pl PROJECT ENVIRONMENT INFORMATION FORM

DATE OF SUBMITTAL: CD PROJECT IDENTIFIER: @

TITLE: (@)

DESCRIPTION: (3)

START DATE: (B END DATE:() =5

CONTROL AUTHORITY:@ NUMBER OF CONTRACTORS:

PROJECT SIZE ESTIMATES
Total Manpower: @
Total Pages Documentation: @
Total Number Program Modules: @
Total Number Subsystems: @
Total Number Source Statements in Operational Software: @
Total Number Source Statements in Support Software: @

Total Number Object Statements in Operational Software: @
Total Number Object Statements in Support Software: @

Total Number Bytes in Data Base: @

PROGECT COMPLEXITY ESTIMATES
Overall Projeet. @) e Application Software: @

Control/Operating System:@_ Support System/Tools/Aids: @
Data Base Structure: @

PROJECT EVALUATION RATINGS
Quality of Requirements Specifications: @

Quality of Design Specifications:

Schedule Adequacy:

Overall Pioject Management Effectiveness: @

Lverall Project Personnel Qualifications: @

Computer Resources Adequacy: @
Quality of Customer Supplied Information:

Timeliness of Review Acticns:

Funding Adequacy:

PROJECT SOFTWARE TYPE: (32) BUSINESS [] SCIENTIFIC B systems []
MAINTENANCE [] OTHER

92

P1 PROJECT ATTRIBUTES INFORMATION FORM

To be completed and submitted at initiation and completion of the software
This form defines the reporting project, the project
size, software complexity, and adequacy of other project specific parameters.

development project.

[Parameter Key [Format E/A Description

Date of Submittal (:) F-6 Current date, either project initiation
or completion date, in the format
lyymmdd.

Project Identifier (:) F-8 An acronym, number or other identifier
that uniquely specifies a project and
identifies all data collection forms
for the project.

Title @ | F-16 A short name or descriptive title for
the project.

Description (@ | v-256] |A brief narrative description of the
software development project, covering
its objectives, scope and approach.

Start Date (:) F-6 Date project is initiated, yymmdd.

End Date (:) F-6 X [Date project is to terminate, yymmdd.

Control Authority [@ | F-10 he name or phrase characterizing the

ustomer's configuration control
gency, e.g9., SP0, CCB, project
nitor, etc.

Number of Sub- F-4 X [Total number of subcontractors partici-

contractors ‘pating in software development project.

Total Manpower ® | F-8 | x [The number of manyears required for
the software project.

Total Pages of Q]) F-8 X |The total number pages of documentation

Documentation to be produced during the performance
of the project.

Total Number @D | F-8 | x [The total number of modules to be

Program Modules produced during the performance of the
project.

Total Number Q}D F-8 X |The total number of subsystems to be

Subsystems produced during the performance of the
project.

Total Number @) | F-8 | X [The number of deliverable POL state-

Operational Jments in the operational system.

Source State-

ments

93

........

I

P1 PROJECT ATTRIBUTES INFORMATION FORM (cont'd)

Parameter Key | Format E/A Description

Total Number Q:) F-8 X | The number of deliverable POL state-

Support Source ments in the support software.

Statements

Total Number Q:) F-8 X | The number of deliverable MOL state-

Operational ments in the operational system.

Object Instruc-

tions

Total Number d:) F-8 X | The number deliverable MOL statements

Support Object in the support software.

Instructions

Total Number Bytes <:) F-8 X { The number of bytes of storage

in Data Base required for data storage.

Overall Project F-2 X {An evaluation of the degree of comple-

Complexity xity of the project, independent from
the complexity of the software pro-
duced. (This evaluation should
consider such factors as the number
of coordination points, number of
subcontractors, number of agencies
per product, number of internal
coordination points, number disci-
plines involved, number and variety
of products produced, number and
variety of information sources.)
Rating scale is 1-10, where 1 = easy,
10 = most difficult.

Application Q:) F-2 |x |A complexity rating for the known

Software characteristics of the solution

Complexity algorithm software being developed.
Rating scale is 1-10, where 1 = easy,
10 = most difficult.

Control/Operating Q{) F-2 [X |A complexity rating of the control

System Complexity software or operating system, either
being developed or used by the soft-
ware development project. Rating
scale is 1-10, where 1 = easy, 10 =
most difficult.

Support System/ CZD F-2 X |A rating of the complexity in the

Tools/ Aids
Complexity

use, interactions and/or documentation|
of the support software. Rating scale
is 1-10, where 1 = easy, 10 = most
difficulty.

94

b

P1 PROJECT ATTRIBUTES INFORMATION FORM (cont'd)

Parameter Key | Format]E/A Description
Data Base (:) F-2 X A rating of the complexity of the data
Structure base, size and structure. Rating scalgA
Complexity is 1-10, where 1=easy, 10=most difficul
Quality of Qg? F-2 An evaluation of the clarity, comple-~
Requirement ness, implementability and verifi-
Specifications ability of the project requirement
specifications. Rating scale is 1-10,
where 1 = very high quality, 10 =
poor quality.
Quality of Design G§9 F-2 | X]An evaluation of the design specifica-
Specifications tions for their completeness, clarity,
and detail. Rating scale is 1-10,whereﬁ
1=high quality, 10=poor quality.
Schedule Q&; F-2 | X |An evaluation of the tightness of
Adequacy project scheduling in view of total pro-
ject. Rating scale is 1-1C, where 1=
ladequate, 10 = inadequate.
Overall Project @ga F-2 X |An evaluation of the management control
Management of the project based on the stringency
Effectiveness of administrative plans, configuration
control procedures, technical direc-
tion given, etc. Rating scale is 1-10,
where 1 = effective management, 10 =
ineffective management.
Overall Project @iﬁ F-2 X |An evaluation of the project personnel,
Personnel including management, technical and
Qualifications administrative support people, in
meeting the projects performance goals.
Rating scale is 1-10, where 1 = highly
qualified, 10 = poorly qualified.
Computer F-2 X [An evaluation of the computer resources
Resources and services to meet the requirements
Adequacy of the project. Rating scale is 1-10,
where 1 = most adequate, 10 = highly
inadequate.
Customer F-2 X |An evaluation of the customer supplied
Supplied data and/or equipment based on the
Information completeness, timeliness and accuracy
(freedom from errors and deficiencies).
Rating scale is 1-10, where 1 = high
quality, 10= poor quality.
95

P1 PROJECT ATTRIBUTES INFORMATION

FORM (cont’'d)

Parameter

Key

Format

E/A

Description

Timeliness of
Review Actions

Funding Adequacy

Project Software
Type

@

F-2

F-2

F-2

An evaluation of the length of time it
takes to process an item through the
review and approval cycle, especially
in terms of exceeding scheduled review
periods and priority, importance or
immediacy of the need for a decision.
Rating scale is 1-10, where 1 = most
expendient, 10 = most time consuming.

An evaluation of the adequacy of
project funds to meet the software
deliverable end items. Rating scale
is 1-10, where 1 = adequate, 10 =
most inadequate.

Indicate the gross classification of
programming choices include:

BUSINESS
SCIENTIFIC
SYSTEMS
MAINTENANCE
OTHER

96

P7 COMPUTER EQUIPMENT iINFORMATION FORM

DATE OF SUBMITTAL:(7) PROJECT IDENTIFIER:(2)
DEVICE IDENTIFIER: (3
DEVICE DESCRIPTION STATISTICS:
Memory Size:(2) Unit of Measure:(5)
Number CPU's:@‘ Number 1/0 Channels:@
Memory Cycle Time:@
Unit of Time Measure:(9) Nano [] Micro (] Sec [}
DEVICE TYPE: (10) Mini | Micro [] Midi (] Maxi [Special Purpose []
SECONDARY STORAGE STATISTICS:

Number Tape Drives: @
Number Random Access Devices: @

MAJOR INPUT DEVICE TYPE: (13' Card [] Paper Tape [Terminal []
PRODUCT IDENTIFIERS: (14)

97

P7 COMPUTER EQUIPMENT INFORMATION FORM

To be completed and submitted at project initiation for each computer
configuration used by the project for software development. This form
identifies the computer equipment capabilities.

Parameter Key | Format)E/A Description

Date of Submittal | (D) | F-6 Current date, either project initiation
or completion date, in the format
yymmdd .

Project Identifier (:) F-8 An acronym, number or other iqentifier
that uniquely specifies a project, and
jdentifies all adata collection forms
for the project.

Device Identifier | (3) | F-24 The name of the computing device
employed, including the manufacturer
of the equipment, the series number,
and the model number.

Memory Size (:) F-10 The amount of information the computer
memory can store and base, e.9., 6&K.

Unit of Measure & | F-10 The unit by which the storage capacity
is measured, e.g., bit, byte, word.

Number of CPU's (:) F-4 The total number of central processing
units associated with the identified
computer.

Number of I/0 (:) F-4 The number of hardware devices that

Channels connects the CPU and main storage with
the I/0 control units.

Memory Cycle Time (5) F-8 CPU cycle or access time.

Unit of Measure ©) F-5 The unit by which cycle time is
measured, e.g., nanoseconds, micro-
seconds, seconds.

Device Type F-7 The general classification of the

computer equipment according to size.

IMini - A computer with a portable

mainframe.

Micro - A computer that is micro-
programmable and is also
portable.

Midi - A medium size computer, e.g.,
PDP10, IBM 360/20-370/158.

Maxi - A large scale computer capable
of multiprocessing, e.g., CDC
7600, IBM 370/191.

98

P7 COMPUTER EQUIPMENT INFORMATION FORM (cont'd)

Parameter Key | Format|E/A Description
Device Type (cont) Special - Computer built to
specific specifica-
tions for a particu-
lar application.
Number Sequential (iﬁ F-6 Number of devices providing secondary
Access Devices storage of sequential access type,
e.g., tape drives.
Number Random (E) F-6 Number of devices providing secondary
Access Devices storage of random access type, e.g.,
discs, drums.
Major Input Device 63) F-10 Type of input device that provides the
Type major percentage of input data
Choices include:
Card - Punched cards
Paper tape - Punched tape
Terminal - Remote site input
Product Q?D F-8 Identifiers of product elements using
Identifiers this hardware device. This field may

be left blank when a single computer
device is used for the development of
all products. In the event that more
than one device is identified for
software development, specify the
highest level Product Identifier using
the device, e.g., the subsystem name.

99

Py

Wl WORK DEFINITION INFORMATION

DATE OF SUBMITTAL:(T) PROJECT IDENTIFIER: (D)

WORK LEVEL:(®) Project | | Phase [] Task [] Activity [
WORK IDENTIFIER: (@)
WORK DESCRIPTION: (%)

IDENTIFIERS OF REPORTING WORK ELEMENTS:(E)

INITIATION DATE:(?) COMPLETION DATE: (8

TERMINATOR: (9)

RESOURCE UTILIZATION DATA

RESOURCE ID UNIT ALLOCATED EXPENDED

@ @ B)

PRODUCT IDENTIFIERS: (9

100

]
— i ..uuu._—‘

Wl WORK DEFINITION INFORMATION FORM

The Work Definition Information Form provides data on the work breakdown
structure in an hierarchical manner, showing the relationship of all work
elements and the chain of authority for each work element the software deve-

lopment project has defined.

The form is to be completed and submitted at

project initiation, work plan formation, or when the work package allocation

is changed.

A Work Definition Information Form is to be completed for each

element for which resource allocation is made.

Parameter Key Format Description

Date of F-6 Current date, either project initia-

Submittal tion, work plan formation or change in
work plan definition, in the format
yymmdd.

Project @ | F-8 An acronym, number of other identifier

Identifier that uniquely specifies the project,
and identifies all data collection

; forms.

Work Level Q) | F-8 Indication of the work breakdown level.
Choices are project, phase, task,
activity.

Work Identifier (:) F-8 A name or number uniquely identifying
this particular work element, and for
which manpower, computer, etc.,
resources will be allocated.

Work Description (:) V-256 A brief narrative description of the
work to be performed including the
purpose, scope and method for this
element.

Identifiers of ® | F-8 Identification of all of the elements

Reporting Work into which this work element is sub-

Elements divided.

Initiation Date (:) F-6 The calendar date for starting the work
element, in the form yymmdd.

Completion Date F-6 The calendar date for completing the
work element, in the form yymmdd.

Terminator @ | F-12 The action taken that completes the

work element being defined. This may
be a milestone, identified on the W8
form, an informal review, or a
delivery.

101

[LT

Wl WORK DEFINITION INFORMATION FORM (cont'd)

Parameter

Format

Description

Resource
Identifier

Resource Unit

Resource Allocated

Resource Expended

Product
Identifier(s)

® @ ©

F-12

F-12

A short name identifying the specific
kind of resource to be utilized, e.g.,
personnel classification, machine type,
travel type, computer time, storage,
etc.

The basic unit of expenditure of the
resource, as manhours, mandays, hours,
minutes, etc.

The total amount of the resource unit
allocated or budgeted for the total
work element.

The amount of allocated res)jurce
expended to the reporting date for this
work element.(Generally, this field is
blank since the form is submitted at
initiation of the work element, prior
to resource expenditures. However,

in the event that resources have been
expended, include all expenditures

for this work element to date.)
Calculated from monthly status

reports after initial input.

The unique identifier of the specific
product, or service, whose production
is evaluated. (The combination of
characters uniquely identifying the
work element and associated products
together form the key by which all
products within all work elements

can be identified. Resource expen-
ditures and productivity data are
periodically collected via these
identifiers.) All products identified
muct be described on the W2 Product
Identification Form.

LB LA atant s L Sat de B aa L iz

102

6.5 DATA ENTRY CONFIGURATION

The data entry system must meet the following requirements:

Transmit data from the point of acquisition to the
central repository.

Convert the data to a machine readible mode.
Detect and correct input errors.

Be flexible in adapting to input changes in individual
item values, additional parameters and variation in forms.

Match the highly structured, modularized and interrelated data
collection forms that have been devised and recommended by
these reports.

Operate as rapidly as required to support data collection and
repository requirements in a cost-effective manner.

The data entry configuration must conform to the concept of operation
adopted for the data repository in the following respects:

a.

If the data repository is to operate in an off-line,
statistical report research mode, stressing historical data
over an extensive period of time without immediate support
for project management or monitoring, it is recommended that
data entry be oriented to a largely manual collection, batch
entry mode.

If the data repository is to operate in an interactive mode,
stressing immediacy of response and currency of data with a
potential for immediate support of project monitoring and
management, it is recommended that point-of-collection data
entry and digital data transmission techniques be used with
a largely transaction oriented entry mode.

For the pilot facility, collecting data from a small number of projects and
supporting a limited amount of research in a trial basis, transmission of
manual data collection forms to the central facility for key board entry is

103

————

deemed the most economical procedure, and it should prove satisfactory for
the trial period. For an expanded facility, collecting data from a great
many projects and supporting a large amount of research, it is strongly
recommended that machine-readable input only be accepted at the

central repository. A manual back-up capability must be preserved in case
of failure, exceptional cases and error correction, but machine-readable
input is necessary to avoid overioad of data analysts and keyboard operators
at the central facility.

In fact, data entry at or near the point of acquisition is highly desirable,
not just to provide machine-readable input to the repository but to avoid
much of the subjectivity and bias associated with subsequent manual
processing to summarize, average and filter the data. The preferred data
entry device is an intelligent terminal with moderately powerful editing
logic, moderate storage capacity, and a CRT display capability for use in
verification and editing of entries. Alternatively, the CRT terminal may

be driven by a local computer. Either option has the following advantages:

® A superior editing capability

® Interactive input and error prompting
(] Storage and review prior to final entry
® Flexibility in adapting to changes

° Entry routines easily reflect modularized and structured
input forms

® Machine-readable and edited output wherever the entry
device is located

It is also recommended that a standard project monitor system be defined
and developed. The monitor should operate in conjunction with the intel-
Tigent terminal capability. A project monitor has great advantage in
fostering and enforcing data collection standards by incorporating
standard, objective and automatic algorithms for filtering, averaging and
summarizing data in the monitor. Further, a project monitor represents an
imrediate payoff to the data suppliers in terms of improved project manage-

104

L LadBargue Sges o

ment. Two approaches to a standard project monitor are available, either one
is quite costly. Standard hardware and software (a very powerful "intelligent
terminal") may be provided to all projects. This alternative does not appear
tenable, considering the number and variety of projects. It also introduces
some interface complexities in integrating the project monitor with program
library operations in the production computer. The alternative of converting
a standard software monitor to operate on many computers is also expensive.
Despite the expense, this study believes that the degree of standardization
and objectivity necessary to produce reliable and comparable data for valid
research results can only be obtained by automating data collection at close
proximity to the source.

No direct -recommendations is made for the transmission of data from intelligent
terminals and project monitors to the repository. If the data collection
system is used to support research only and research results are not used to
adjust the operation of the software development process, manual transmission
of machine-readable media is quite adequate. If the data collection system is
used beyond the local data base to support project management, or if research
results are to influence software development, a more rapid data transfer, such
as digital data communication lines, is indicated.

6.6 DATA BASE AND DATA BASE MANAGEMENT

The interface between the data collection and the data base management
systems is determined by a large number of factors including:

° The degree of data base centralization
° The structure of the data base
@ The capabilities of the data management system

® The nature of the data retrieval capability

If only basic, long-term research is supported using derived data, a
completely centralized data base is indicated. If immediate project manage-
ment is supported as well as research, localized data stores and project
monitor systems are recommended to buffer input to the central store and

to interact with the centralized data management system.

A centralized system is easier and cheaper to implement and operate than

a decentralized system, but participating projects receive little or no
benefit from the repository and may resist supplying data. Unless machine-
readable data is delivered, key entry at the central repository will be at
a high volume; error correction from a central location entails substantial
delays without on-line access to distant data sources.

A decentralized system is more costly and difficult to implement and operate
than a centralized system, but can provide direct benefit to data suppliers.
Project management may also feel that their data base is more secure if it
resides at the project site and data may be desensitized before transmittal
to the central store. That is, fine detail may be collected at the project
site, but only filtered, summarized data need be sent to the central data
base. Data entry at the local data base permits immediate notification

and correction of errors. Local data bases may also be more amenable to

the employment of automatic collection capabilities since direct interfaces
with program library operations, program production tools and computer
operating systems are possible.

The data base structure employed must be flexible to permit growth over

time and to allow new logical views of the data to be added as old ones

are deleted. Serial records that are related through indices offer the most
flexible structure and it is recommended that:

(] Records be written serially on a device.

® Direct access storage be used for current records and tape for
historical records.

® Records be indexed on one or more keys.
® Indexes be kept on direct access storage.

® Pointers in one record type be allowed to point to records
of another record type or to an index containing pointers to
records of another record type.

Flexibility is also needed in the data management system to provide for
change in the data base and to adjust to the unforeseen needs of research
users. It is recommended that a data management system be developed

whose physical data base structure is transparent to the user. That is, the
user should view the data base in a logical structure that is optimum to

his employment and not be concerned with the mapping of his view

onto the physical structure of the data base. To implement this recommen-
dation, the system should:

[} Provide a data definition language capable of defining multiple
logical views of the data base by building a table to be used by
access routines to map the logical views to the physical view.

° Provide sufficient independence of the logical from the physical
view so that new data items and record relationships can be
added without affecting the existing Togical views.

® Include security keys that must be supplied before data base
access is allowed.

® Prevent access to data items outside the logical view of the
user.

107

® Defer batch updates to periods of minimal activity to avoid
problems of deadlock and restart.

The data retrieval procedures do not have a major impact on the data
collection system, but are intricately involved with the data base structure
and the data management system unless the data retrieval requests are
handled over the same communication channels as data entry. Data retrieval
will range from standard reports to analytic requests to random queries.
Extraction of data subsets for particular users is also a possibility. If
the data collection and repository agency generates all reports, a less
sophisticated security system is necessary than if access is semi-public.

If the central repository is used to support management on a local or
regional basis, the interaction frequency will be greatly increased.
However, if local or distributed data bases are used, the level of activity
at the central repository will be 1essened. Simulation tools, software
development models and project management tools may be developed for use with
the data collection and data retrieval system. Only minimal direct impact
should be expected on data collection procedures but the data base might
need to change to support these toois.

108 *

6.7 REPOSITORY OPERATIONS MANAGEMENT

The relative merits of having the data collection and data repository
facility managed by Air Force, Civil Service or civilian contractor were
evaluated. The evaluation criteria used were the degree of flexiblity a
particular agency would have in adjusting to changing requirempnts, the
responsiveness of the agency to contract directives, the productivity of the
agency, and the cost. It is also possible to assign specific functional
operations to one or the other kinds of agencies. For instance,

operation of the computer facility and the document library facility might
well be assigned toone agency or be a time-shared facility with other
operations, while data entry, system support and research analysis are done
by another agency.

The results of the considerations are summarized in Figure 6.

The rankings shown in the figure reflect fractional differences; in almost
every case, a 'best case' argument for a less favored agency is better than

a 'worst case' for others since individual persons and agencies vary widely
in performance.

While Air Force agencies are normally flexible in organization and operation,
they are often plagued by problems of personnel availability and turnover.
Civil Service has better access to trained personnel, but manning restric-
tions and red tape impair its ability to adjust. Civilian contractors are
normally quite flexible in meeting changed contract requirements and usually
have access to trained personnel. Using Air Force or Civil Service
personnel for' stable positions and contract personnel for positions subject
to rapid change might provide the greatest flexibility, but overall a plus
was given to the contract personrel.

Although Air Force and Civil Service personnel operate under the direct
command of RADC personnel, penalties and rewards for performance are
difficult to apply. The civilian contractor is the most effectively
controlled, given the proper provisions for incentives in the contract.
Controlling a mixed group is probably most difficult because of the diversity

of authority and complexity of relationships.
109

s . i - (. St R P SN

e]

* £ouaby juawabeuey suoijesadp

U JO UOL3DI|3S dY2 404 XLAJBW UOLSLI3(‘9 aunty
aALIebau = -
|ea3nau = 0
aALjLsod = 4+
L]
dnoug
4 0 0 0 0 PIX N
32404
€ + = 0 0 aiy 4
EAUNETS
1 0 0 > - LIAL)
J4039043U07)
! 0 + + + ueLLAL)
juey 3s0) A31AL39nposd A3111qe||043u0) A3L11q1x31d
NOILdO
INIWIOVNVW

The productivity of Air Force personnel is inhibited by performance of

other responsibilities, frequent turnover and inadequate training. Civil
Service job standards ensure that adequately trained persons are assigned; pyt
while stability is high, liberal vacation and sick leave policies may

cut into productivity. Although levels of experience and training are not
likely to be as rigidly observed as in civil service, contractor personnel

are more subject to incentives and actual removal from the job if perfor-
mance is not satisfactory, keeping productivity high.

Although cost is a critical factor in the evaluation of a potential
operations management agency, there is little basis upon which to choose

an agency. Although the Air Force may have a slight advantage, large salary
variations with skill and experience obscure the differences among the
agencies and choice should probably be made on other grounds.

This study recommends that the data collection, entry and retrieval system
be managed by a single civilian agency under contract to RADC. As compared
to either Civil Service or Air Force management, operations management by a
private contractor is judged to be:

° More flexible in meeting changed demands.

[More easily controlled due to contractual control over
financial incentives and more easily criticized than "in-house"
agencies.

® More productive in that incentives and punishment are more
readily applied.

On a body for body basis, there seems no clear cost advantage for any of

the potential management agencies. Air Force personnel tend to have lower
salaries, offset by the amount of time that may be devoted to other duties,
high (albeit hidden) overhead costs, and high turnover rate. Civil Service
tends to get equal salaries with private industry, plus generous fringe
benefits.

m

ettt s) e i

P

One potential drawback to civilian management lies in the reluctance of
other corporations to release information to a potential competitor, a real
but surmountable difficulty. MHence, in view of the greater responsiveness
of the contract agency, a civilian contract agency appears to be the better
choice. It is true that inadequate contract provisions can lead to poor
performance through both lack of guidance and inefficient application of
penalties and incentives, but an opportunity to correct these arises each
contract year. Operations management or support contracts are currently
quite popular in a fiercely competitive market. The prospect of acquiring
a competent, efficient operation is quite good.

12

e,

P T W o

7. IMPLICATIONS FOR FURTHER RESEARCH

Creating a viable data collection and software data repository will require a
great deal of additional investigation and system development effort. While
numerous recommendations have been set forth here, many of them are contingent
upon the design decisions that are made for the total system. Assuming that
an overall operational concept and system configuration has been selected and
the data collection and data management system recommendations set forth by
'SDC and IITRI have been adopted, system specifications should be produced to
set forth the requirements for:

® Acquisition, development and/or integration of software develop-
ment tools into the data collection system.

e Determination of the effectiveness of the data collection
procedures and parameters in meeting the needs of research in
terms of data volume, data base structure, and data management
system requirements.

e Selection of the mode of operation and appropriate hardware/
software requirements.

e Development of an extensive set of user oriented manuals,
including:

- Data and terminology standards.

- Procurement (contract) provisions to support the data
system.

- Mechanisms for data collection system maintenance and
improvement.

- System examples to illustrate usage.

- Classification appendices to support complex data
category values.

o Institution of repository studies to develop more objective
indices, especially in the project environment attributes.

e Examination and incorporation of more comprehensive configuration
management controls with the data collection procedures. (Only
minimal requirements are incorporated in the suggested data
collection forms).

P

e Investigation and specification of data sampling, filtering and
summarizing algorithms to provide more objective data reduction
to avoid the distorting effects of subjective procedures.

e Performance of trade-off studies of project monitors and intelli-
gent terminals capable of local data entry editing and prepara- ' g
tion of machine-readable reports for the central repository. (It
is felt that submitting a high volume of detailed manual data "i
forms for keying at the central repository may prove infeasible.)

It is felt that the following software capabilities need to be developed:

e An input editor or error analysis program to validate the data
submitted to the repository while automatically obtaining error ;
statistics related to the completion and submission of the
collection forms.

e A data management system sufficient to meet the recommendations
set forth in this study.

e A report generation system sufficient to meet the needs of RADC
research and user requests for analyses.

e Statistical analysis programs to perform sampling, filtering
summarizations and other data reduction tasks.

e Semi-automatic management systems or project monitor to satisfy
the management needs of the project and the research needs of
the repository as a data entry buffer system.

%US. GOVERNMENT PRINTING OFFICE: 1977-714-025/83

114

ﬁhu-iuunnnﬂu_-u-iun-niﬂ.i-ii.ﬁ-ﬂiI-liﬁiIilIi.H“Ilﬁ.i.......i.'.l‘.-.“

oty

'S
%

